Analisis Perbandingan Response Time View dan Materialized View pada Database Oracle dalam Treasury Big Data DJPb Kemenkeu
DOI:
https://doi.org/10.52436/1.jpti.671Kata Kunci:
Big Data, Database Oracle, Kecepatan Akses Data, Materialized View, Optimasi Basis Data, Response Time, Treasury, ViewAbstrak
Pengelolaan data dalam volume besar, seperti pada sistem Treasury Direktorat Jenderal Perbendaharaan (DJPb) Kementerian Keuangan, memerlukan teknik optimasi yang efektif untuk memastikan kinerja sistem yang optimal. Penelitian ini bertujuan membandingkan waktu respons antara penggunaan View dan Materialized View pada database Oracle dalam konteks Big Data DJPb. Berdasarkan eksperimen yang dilakukan, Materialized View memberikan peningkatan signifikan dalam kecepatan query, terutama untuk query yang kompleks dan berulang. Walaupun membutuhkan biaya penyimpanan tambahan dan pemeliharaan yang lebih tinggi, teknik ini terbukti lebih efisien dalam mendukung kebutuhan akses data yang cepat dan sering. Penelitian ini memberikan rekomendasi praktis untuk meningkatkan efisiensi pengelolaan Treasury Big Data dalam sistem keuangan negara, terutama dalam memilih teknik optimasi basis data yang sesuai. Implementasi Materialized View diharapkan dapat membantu DJPb mencapai tujuan efisiensi dan akurasi dalam pengambilan keputusan berbasis data.
Unduhan
Referensi
R. DJPb, “Manfaatkan Data Analytics Tingkatkan Kualitas Pengelolaan APBN,” DJPb | Direktorat Jenderal Perbendaharaan Kementerian Keuangan RI. Accessed: Jun. 30, 2024. [Online]. Available: https://djpb.kemenkeu.go.id/portal/id/tagline-ditjen-perbendaharaan/839-campaign-1/3754-manfaatkan-data-analytics-tingkatkan-kualitas-pengelolaan-apbn-2.html
N. M. Khushairi, N. A. Emran, and M. M. M. Yusof, “Database Performance Tuning Methods for Manufacturing Execution System,” World Appl. Sci. J. 30 Innov. Chall. Multidiciplinary Res. Pract., pp. 91–99, 2014, doi: 10.5829/idosi.wasj.2014.30.icmrp.14.
R. Gunawan, A. Rahmatulloh, and I. Darmawan, “Performance Evaluation of Query Response Time in The Document Stored NoSQL Database,” in 2019 16th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering, Padang, Indonesia: IEEE, Jul. 2019, pp. 1–6. doi: 10.1109/QIR.2019.8898035.
M. Nuriev, R. Zaripova, A. Sinicin, A. Chupaev, and M. Shkinderov, “Enhancing database performance through SQL optimization, parallel processing and GPU integration,” BIO Web Conf., vol. 113, p. 04010, 2024, doi: 10.1051/bioconf/202411304010.
L. L. Perez and C. M. Jermaine, “History-aware query optimization with materialized intermediate views,” in 2014 IEEE 30th International Conference on Data Engineering, Chicago, IL, USA: IEEE, Mar. 2014, pp. 520–531. doi: 10.1109/ICDE.2014.6816678.
Graduate Researcher, Management Information Systems, College of Business, Lamar University, Beaumont, Texas, USA et al., “OPTIMIZING SQL DATABASES FORBIG DATA WORKLOADS: TECHNIQUES AND BEST PRACTICES,” Acad. J. Bus. Adm. Innov. Sustain., vol. 4, no. 3, pp. 15–29, Jun. 2024, doi: 10.69593/ajbais.v4i3.78.
St. Xavier?s College (Autonomous), Kolkata, India, D. Datta, and K. N. Dey, “Application of Materialized View in Incremental Data Mining Operation,” Int. J. Inf. Technol. Comput. Sci., vol. 9, no. 6, pp. 43–49, Jun. 2017, doi: 10.5815/ijitcs.2017.06.06.
M. Manavi, “Multi-Objective Genetic Algorithm for Materialized View Optimization in Data Warehouses,” 2024, arXiv. doi: 10.48550/ARXIV.2403.19906.
F. Zhao, D. Agrawal, and A. E. Abbadi, “Hybrid Querying Over Relational Databases and Large Language Models,” 2024, doi: 10.48550/ARXIV.2408.00884.
C. Zhu, Q. Zhu, C. Zuzarte, and W. Ma, “Developing a Dynamic Materialized View Index for Efficiently Discovering Usable Views for Progressive Queries,” J. Inf. Process. Syst., vol. 9, no. 4, pp. 511–537, Dec. 2013, doi: 10.3745/JIPS.2013.9.4.511.
R. Adnan and T. M. J. Abbas, “MATERIALIZED VIEWS QUANTUM OPTIMIZED PICKING for INDEPENDENT DATA MARTS QUALITY,” Iraqi J. Inf. Commun. Technol., vol. 3, no. 1, pp. 26–39, Apr. 2020, doi: 10.31987/ijict.3.1.88.
A. R. Raipurkar and M. B. Chandak, “Optimized execution method for queries with materialized views: Design and implementation,” J. Intell. Fuzzy Syst., vol. 41, no. 6, pp. 6191–6205, Dec. 2021, doi: 10.3233/JIFS-202821.
M. Malcher and D. Kuhn, “Views, Duality Views, and Materialized Views,” in Pro Oracle Database 23c Administration, Berkeley, CA: Apress, 2024, pp. 269–303. doi: 10.1007/978-1-4842-9899-2_9.
S. Sagiroglu and D. Sinanc, “Big data: A review,” in 2013 International Conference on Collaboration Technologies and Systems (CTS), San Diego, CA, USA: IEEE, May 2013, pp. 42–47. doi: 10.1109/CTS.2013.6567202.
D. Das et al., “Query optimization in Oracle 12c database in-memory,” Proc. VLDB Endow., vol. 8, no. 12, pp. 1770–1781, Aug. 2015, doi: 10.14778/2824032.2824074.
Y. Pang, L. Zou, J. X. Yu, and L. Yang, “Materialized View Selection & View-Based Query Planning for Regular Path Queries,” Proc. ACM Manag. Data, vol. 2, no. 3, pp. 1–26, May 2024, doi: 10.1145/3654955.
K. Sasidhar, P. R. Kumar, N. Anuradha, A. A. Kumar, and N. N. Raju, “Analytical Models for Materialized View Maintenance Methods,” in Impending Inquisitions in Humanities and Sciences, 1st ed., London: CRC Press, 2024, pp. 315–322. doi: 10.1201/9781003489436-49.
A. Solarz and T. Szymczyk, “Oracle 19c, SQL Server 2019, Postgresql 12 and MySQL 8 database systems comparison,” J. Comput. Sci. Inst., vol. 17, pp. 373–378, Dec. 2020, doi: 10.35784/jcsi.2281.
D. A. E. Saputri, N. A. N. Rabbaani, P. D. Lestari, and S. Mukaromah, “ANALYSIS OF THE EFFECT OF B-TREE INDEX IMPLEMENTATION ON DATABASE PERFORMANCE,” Pros. Semin. Nas. Teknol. Dan Sist. Inf. SITASI, pp. 475–481, Sep. 2023.
1Faculty of Computer Science and Information Technology,Universiti Tun Hussein Onn Malaysia, 86400 Johor, MALAYSIA et al., “A Case Study on B-Tree Database Indexing Technique,” J. Soft Comput. Data Min., vol. 1, no. 1, Mar. 2020, doi: 10.30880/jscdm.2020.01.01.004.