Persepsi Kegunaan Menentukan Niat untuk Menggunakan GenAI: Model Adopsi Informasi
DOI:
https://doi.org/10.52436/1.jpti.1210Kata Kunci:
Adopsi ChatGPT, AI Generatif, Kegunaan Yang Dirasakan, Kinerja Pembelajaran, Pendidikan TinggiAbstrak
Teknologi Generative Artificial Intelligence (GenAI) berperan strategis dalam transformasi pendidikan tinggi, termasuk dalam personalisasi pembelajaran, otomatisasi konten, serta dukungan administratif dan penelitian. Salah satu aplikasi GenAI yang paling banyak diadopsi adalah ChatGPT, model bahasa alami berbasis AI dari OpenAI. Namun, tingkat adopsi berkelanjutan oleh mahasiswa, khususnya pada institusi pendidikan tinggi di wilayah berkembang seperti Universitas Papua di Papua Barat, masih rendah dan belum banyak dikaji. Studi ini bertujuan menganalisis pengaruh kualitas argumen, kredibilitas sumber, kesenangan yang dirasakan, persepsi kegunaan (perceived usefulness), dan kemudahan penggunaan (perceived ease of use) terhadap persepsi kegunaan informasi (information usefulness), serta implikasinya terhadap penggunaan ChatGPT dan kinerja belajar mahasiswa yang diukur melalui efektivitas, efisiensi, dan kepastian hasil belajar. Pendekatan kuantitatif digunakan dengan menyebar kuesioner daring kepada 140 mahasiswa aktif Universitas Papua yang telah menggunakan ChatGPT dalam konteks akademik. Analisis data dilakukan dengan metode Partial Least Squares Structural Equation Modeling (PLS-SEM), mengintegrasikan model Information Adoption Model (IAM), persepsi kegunaan (perceived usability), dan dimensi kinerja pembelajaran. Hasil menunjukkan bahwa perceived usefulness dan perceived ease of use berpengaruh signifikan terhadap information usefulness, yang berdampak positif terhadap kepercayaan belajar, penggunaan ChatGPT, efektivitas, dan efisiensi pembelajaran. Namun, konstruk lain seperti argument quality, perceived enjoyment, dan source credibility tidak berpengaruh langsung signifikan terhadap information usefulness. Nilai koefisien determinasi (R²) menunjukkan daya prediksi moderat hingga kuat. Temuan menegaskan pentingnya perluasan model adopsi dengan mempertimbangkan faktor eksternal seperti literasi digital, kepercayaan terhadap AI, serta dukungan institusional untuk mendorong adopsi GenAI yang berkelanjutan.
Unduhan
Referensi
E. Kasneci et al., “ChatGPT for good? On opportunities and challenges of large language models for education,” Learn. Individ. Differ., vol. 103, p. 102274, Apr. 2023.
F. D. Davis, “Perceived usefulness, perceived ease of use, and user acceptance of information technology,” MIS Q. Manag. Inf. Syst., vol. 13, no. 3, pp. 319–339, 1989.
S. W. Sussman and W. S. Siegal, “Informational influence in organizations: An integrated approach to knowledge adoption,” Inf. Syst. Res., vol. 14, no. 1, pp. 47–65, 2003.
S. A. Iriyani, E. N. . Patty, A. R. Akbar, R. Idris, and B. A. P. Priyudahari, “Studi Literatur Pemanfaatan Teknologi Chat GPT dalam Pendidikan,” Upgrad. J. Pendidik. Teknol. Inf., vol. 1, no. 1, pp. 9–16, 2024.
Niyu, Desideria Dwihadiah, Azalia Gerungan, and Herman Purba, “Penggunaan ChatGPT di Kalangan Mahasiswa dan Dosen Perguruan Tinggi Indonesia,” Cover. J. Strateg. Commun., vol. 14, no. 2, pp. 130–145, 2024.
C. M. K. Cheung, M. K. O. Lee, and N. Rabjohn, “The impact of electronic word?of?mouth,” Internet Res., vol. 18, no. 3, pp. 229–247, Jun. 2008.
M. T. Islam, S. R. Hussin, and W. F. Yee, “Factors Influencing the Information Adoption from Social Media review Platform: Extending Information Adoption Model (IAM) with Information Diagnosticity,” J. Content, Community Commun., vol. 16, no. 8, pp. 4–25, 2022.
V. Venkatesh and F. D. Davis, “Theoretical extension of the Technology Acceptance Model: Four longitudinal field studies,” Manage. Sci., vol. 46, no. 2, pp. 186–204, 2000.
J. Ma, P. Wang, B. Li, T. Wang, X. S. Pang, and D. Wang, “Exploring User Adoption of ChatGPT: A Technology Acceptance Model Perspective,” Int. J. Human–Computer Interact., vol. 41, no. 2, pp. 1431–1445, Jan. 2025.
Q. Gao, “Decision Support Systems for Lifelong Learning: Leveraging Information Systems to Enhance Learning Quality in Higher Education,” J. Internet Serv. Inf. Secur., vol. 14, no. 4, pp. 121–143, 2024.
R. Panigrahi, P. R. Srivastava, and P. K. Panigrahi, “Effectiveness of e-learning: the mediating role of student engagement on perceived learning effectiveness,” Inf. Technol. People, vol. 34, no. 7, pp. 1840–1862, 2021.
T. Rasul et al., “The role of ChatGPT in higher education: Benefits, challenges, and future research directions,” J. Appl. Learn. Teach., vol. 6, no. 1, pp. 41–56, 2023.
A. M. M. Badr, B. S. Al-Abdi, M. Rfeqallah, R. Kasim, and F. A. M. Ali, “Information quality and students’ academic performance: the mediating roles of perceived usefulness, entertainment and social media usage,” Smart Learn. Environ., vol. 11, no. 1, 2024.
R. Panigrahi, P. R. Srivastava, and D. Sharma, “Online learning: Adoption, continuance, and learning outcome—A review of literature,” Int. J. Inf. Manage., vol. 43, pp. 1–14, Dec. 2018.
T. A. M. do Nascimento, F. S. Verner, C. A. A. Lemos, and R. B. Junqueira, “Association between Apical Periodontitis and Autoimmune Diseases: A Systematic Review with Meta-analysis,” J. Endod., vol. 51, no. 5, pp. 562–570, May 2025.
Hair J, A. R, Babin B, and Black W, “Multivariate Data Analysis.pdf,” Australia?: Cengage, vol. 7 edition. p. 758, 2014.
C. Li, J. Yang, H. Zhang, L. Tian, J. Guo, and G. Yu, “Assessment of University Students’ Behavioral Intentions to Use ChatGPT: A Comprehensive Application Based on the Innovation Diffusion Theory and the Technology Acceptance Model,” 2024.
S. Balaskas, V. Tsiantos, S. Chatzifotiou, and M. Rigou, “Determinants of ChatGPT Adoption Intention in Higher Education: Expanding on TAM with the Mediating Roles of Trust and Risk,” Inf., vol. 16, no. 2, pp. 1–28, 2025.
J. Kim and J. Moon, “Determinants of Usefulness of Chat GPT for Learning in Technology Acceptance Model (TAM) Using Information Credibility, Fun, and Responsiveness and Moderating Role of Fun,” SAGE Open, vol. 15, no. 1, pp. 1–14, 2025.
R. A. M. Abdalla, “Examining awareness, social influence, and perceived enjoyment in the TAM framework as determinants of ChatGPT. Personalization as a moderator,” J. Open Innov. Technol. Mark. Complex., vol. 10, no. 3, p. 100327, 2024.
V. Fitria, “Applying UTAUT2 to AI-driven IELTS preparation?: A study of ChatGPT adoption Indonesian Journal of English Education APPLYING UTAUT2 TO AI-DRIVEN IELTS PREPARATION?: A STUDY OF CHATGPT ADOPTION,” no. December, 2024.
M. K. Rahman, N. A. Ismail, A. Hossain, and M. S. Hossen, “Students ’ mindset to adopt AI chatbots for effectiveness of online learning in higher education,” Futur. Bus. J., 2025.
M. Setälä, V. Heilala, P. Sikström, and T. Kärkkäinen, The Use of Generative Artificial Intelligence for Upper Secondary Mathematics Education Through the Lens of Technology Acceptance, vol. 1, no. 1. Association for Computing Machinery, 2025.
Y. Lin and Z. Yu, “Extending Technology Acceptance Model to higher-education students’ use of digital academic reading tools on computers,” Int. J. Educ. Technol. High. Educ., vol. 20, no. 1, 2023.
M. Ridwan et al., “Faktor penentu niat untuk menggunakan chatgpt di kalangan mahasiswa fakultas sains dan teknologi 1,2,” vol. 5, no. 3, pp. 687–698, 2024.
M. Sallam et al., “ChatGPT usage and attitudes are driven by perceptions of usefulness, ease of use, risks, and psycho-social impact: a study among university students in the UAE,” Front. Educ., vol. 9, no. August, p. 1414758, Aug. 2024.
M. F. Shahzad, S. Xu, and I. Javed, “ChatGPT awareness, acceptance, and adoption in higher education: the role of trust as a cornerstone,” Int. J. Educ. Technol. High. Educ., vol. 21, no. 1, 2024.
C. Yu, J. Yan, and N. Cai, “ChatGPT in higher education: factors influencing ChatGPT user satisfaction and continued use intention,” Front. Educ., vol. 9, no. May, pp. 1–11, 2024.
Y. Hasan, A. Mamary, A. A. Alfalah, and M. M. Alshammari, “Exploring factors influencing university students ’ intentions to use ChatGPT?: analysing task ? technology fit theory to enhance behavioural intentions in higher education,” Futur. Bus. J., vol. 10, no. 1, pp. 1–17, 2024.
J. Wang and W. Fan, “The effect of ChatGPT on students’ learning performance, learning perception, and higher-order thinking: insights from a meta-analysis,” Humanit. Soc. Sci. Commun., vol. 12, no. 1, pp. 1–21, 2025.
H. Jo, “From concerns to benefits: a comprehensive study of ChatGPT usage in education,” Int. J. Educ. Technol. High. Educ., vol. 21, no. 1, 2024.
D. Adams, K.-M. Chuah, E. Devadason, and M. S. A. Azzis, “From novice to navigator: Students’ academic help-seeking behaviour, readiness, and perceived usefulness of ChatGPT in learning,” Educ. Inf. Technol., vol. 29, no. 11, pp. 13617–13634, Aug. 2024.
P. E. Casimiro and C. Caterio, “The Impact of Academic Workload , Time Pressure , and Performance Expectations on ChatGPT Utilization and Dependence?: A Structural Equation Model,” no. December, 2024.
M. Mohadir et al., “The Mediating Role of ChatGPT in The Relationship Between Academic Workload , Learning Facilities , and Academic Efficiency Abstract?:,” no. February, 2025.
F. Faul, E. Erdfelder, A.-G. Lang, and A. Buchner, “G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences,” Behav. Res. Methods, vol. 39, no. 2, pp. 175–191, May 2007.
J. F. Hair, G. T. Hult, C. Ringle, and M. Sarstedt, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) - Joseph F. Hair, Jr., G. Tomas M. Hult, Christian Ringle, Marko Sarstedt. 2017.
J. Henseler, C. M. Ringle, and R. R. Sinkovics, “The use of partial least squares path modeling in international marketing,” Adv. Int. Mark., vol. 20, no. January 2009, pp. 277–319, 2009.
J. F. Hair, G. T. M. Hult, C. M. Ringle, M. Sarstedt, N. P. Danks, and S. Ray, Evaluation of Formative Measurement Models. 2021.
D. I. Inan et al., “Technology anxiety and social influence towards intention to use of ride-hailing service in Indonesia,” Case Stud. Transp. Policy, vol. 10, no. 3, pp. 1591–1601, Sep. 2022.
S. Sayyida, “STRUCTURAL EQUATION MODELING (SEM) DENGAN SMARTPLS DALAM MENYELESAIAKAN PERMASALAHAN DI BIDANG EKONOMI,” J. MISSY (Management Bus. Strateg., vol. 4, no. 1, pp. 6–13, Jun. 2023.
R. Nadlifatin et al., “Understanding Factors Influencing Traveler’S Adoption of Travel Influencer Advertising: an Information Adoption Model Approach,” Bus. Theory Pract., vol. 23, no. 1, pp. 131–140, 2022.
D. I. Inan et al., “Service quality and self-determination theory towards continuance usage intention of mobile banking,” J. Sci. Technol. Policy Manag., vol. 14, no. 2, pp. 303–328, Mar. 2023.
J. Henseler, C. M. Ringle, and M. Sarstedt, “A new criterion for assessing discriminant validity in variance-based structural equation modeling,” J. Acad. Mark. Sci., vol. 43, no. 1, pp. 115–135, 2015.
J. F. Hair Jr., L. M. Matthews, R. L. Matthews, and M. Sarstedt, “PLS-SEM or CB-SEM: updated guidelines on which method to use,” Int. J. Multivar. Data Anal., vol. 1, no. 2, p. 107, 2017.
A. D. Oktavia, D. I. Inan, R. N. Wurarah, and O. A. Fenetiruma, “Analisis Faktor-faktor Penentu Adopsi E-Wallet di Papua Barat: Extended UTAUT 2 dan Perceived Risk,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 2, pp. 587–600, 2024.
I. S. Wijaya, “Analisis Kesuksesan E-Learning Edmodo Dengan Mengadopsi Model DeLone & Mclean Di Universitas Dinamika Bangsa,” JATISI J. Tek. Inform. dan Sist. Inf., vol. 9, no. 3, pp. 2547–2557, 2022.
P. M. Podsakoff, S. B. MacKenzie, J.-Y. Lee, and N. P. Podsakoff, “Common method biases in behavioral research: A critical review of the literature and recommended remedies.,” J. Appl. Psychol., vol. 88, no. 5, pp. 879–903, 2003.
J. Ma, P. Wang, B. Li, T. Wang, X. S. Pang, and D. Wang, “Exploring User Adoption of ChatGPT: A Technology Acceptance Model Perspective,” Int. J. Hum. Comput. Interact., vol. 0, no. 0, pp. 1–15, 2024.
C. M. K. Cheung, M. K. O. Lee, and N. Rabjohn, “The impact of electronic word-of-mouth: The adoption of online opinions in online customer communities,” Internet Res., vol. 18, no. 3, pp. 229–247, 2008.










