Arsitektur U-Net Pada Segmentasi Citra Paru Untuk Mendeteksi Nodul Paru

Authors

  • Ermatita Ermatita Fakultas Ilmu Komputer, Universitas Sriwijaya, Indonesia
  • Wahyu Ningsih Fakultas Ilmu Komputer, Universitas Sriwijaya, Indonesia

DOI:

https://doi.org/10.52436/1.jpti.600

Keywords:

Citra, Nodul Paru, U-Net

Abstract

Arsitektur U-Net dirancang untuk mengatasi kendala jumlah data yang terbatas, terutama dalam bidang medis. Dengan struktur encoder-decoder yang simetris, U-Net mampu mengekstraksi fitur penting dari citra input melalui encoder dan merekonstruksi citra sambil mempertahankan detail spasial melalui koneksi skip. Dalam segmentasi citra paru, U-Net digunakan untuk mendeteksi dan memetakan nodul paru secara otomatis dari CT scan. Penerapan U-Net diharapkan dapat mengurangi beban kerja ahli radiologi, meningkatkan konsistensi diagnosis, dan mempercepat proses deteksi nodul. Pada penelitian ini, U-Net mencapai akurasi sebesar 94% dalam segmentasi nodul paru.

Downloads

Download data is not yet available.

References

World Health Organization, “Kanker Paru-paru,” World Health Organization. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/lung-cancer

A. H. Uddin, Y.-L. Chen, M. R. Akter, C. S. Ku, J. Yang, and L. Y. Por, “Colon and lung cancer classification from multi-modal images using resilient and efficient neural network architectures,” Heliyon, vol. 10, no. 9, p. e30625, May 2024, doi: 10.1016/j.heliyon.2024.e30625.

M. Rela, N. R. Suryakari, and P. R. Reddy, “Liver Tumor Segmentation and Classification: A Systematic Review,” in 2020 IEEE-HYDCON, Hyderabad, India: IEEE, Sep. 2020, pp. 1–6. doi: 10.1109/HYDCON48903.2020.9242757.

A. M. Anter and A. E. Hassenian, “CT liver tumor segmentation hybrid approach using neutrosophic sets, fast fuzzy c-means and adaptive watershed algorithm,” Artif. Intell. Med., vol. 97, pp. 105–117, Jun. 2019, doi: 10.1016/j.artmed.2018.11.007.

M. Rela, S. Nagaraja, and P. Ramana, “Liver Tumor Segmentation using Superpixel based Fast Fuzzy C Means Clustering,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 11, 2020, doi: 10.14569/IJACSA.2020.0111149.

O. Ronneberg, P. Fischer, and T. Brox, “U-net: Convolutional Networks for Biomedical Image Segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Cham, Switzerland: Springer International Publishing, 2015, pp. 234–241.

A. Desiani, Erwin, B. Suprihatin, S. Yahdin, A. I. Putri, and F. R. Husein, “Bi-path Architecture of CNN Segmentation and Classification Method for Cervical Cancer Disorders Based on Pap-smear Images,” IAENG Int. J. Comput. Sci., vol. 48(3), pp. 1–10, 2021.

A. O?uz and Ö. F. Ertu?rul, “Introduction to deep learning and diagnosis in medicine,” in Diagnostic Biomedical Signal and Image Processing Applications with Deep Learning Methods, Elsevier, 2023, pp. 1–40. doi: 10.1016/B978-0-323-96129-5.00003-2.

A. D. C. Zebua, D. Y. Marbun, F. Thedora, and M. Harahap, “Classification of Lung Cancer with Convolutional Neural Network Method Using ResNet Architecture,” Teknika, vol. 13, no. 2, pp. 318–323, Jul. 2024, doi: 10.34148/teknika.v13i2.906.

A. A. Riadi, A. A. Chamid, and A. Sokhibi, “Analisis Komparasi Metode Perbaikan Kontras Berbasis Histogram Equalization pada Citra Medis,” Simetris J. Tek. Mesin Elektro Dan Ilmu Komput., vol. 8, no. 1, pp. 383–388, Apr. 2017, doi: 10.24176/simet.v8i1.1026.

N. Alalwan, A. Abozeid, A. A. ElHabshy, and A. Alzahrani, “Efficient 3D Deep Learning Model for Medical Image Semantic Segmentation,” Alex. Eng. J., vol. 60, no. 1, pp. 1231–1239, Feb. 2021, doi: 10.1016/j.aej.2020.10.046.

J. Cai, “Segmentation and Diagnosis of Liver Carcinoma Based on Adaptive Scale-Kernel Fuzzy Clustering Model for CT Images,” J. Med. Syst., vol. 43, no. 11, p. 322, Nov. 2019, doi: 10.1007/s10916-019-1459-2.

S. M. Anwar, S. Awan, S. Yousaf, and M. Majid, “Segmentation of Liver Tumor for Computer Aided Diagnosis,” in 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Sarawak, Malaysia: IEEE, Dec. 2018, pp. 366–370. doi: 10.1109/IECBES.2018.8626682

Published

2025-01-19

How to Cite

Ermatita, E., & Ningsih, W. (2025). Arsitektur U-Net Pada Segmentasi Citra Paru Untuk Mendeteksi Nodul Paru. Jurnal Pendidikan Dan Teknologi Indonesia, 5(1), 123-130. https://doi.org/10.52436/1.jpti.600