Prediksi Ketuntasan Belajar Siswa Menggunakan Naive Bayes dengan Integrasi Data Akademik, Absensi, dan Partisipasi Ekstrakurikuler
DOI:
https://doi.org/10.52436/1.jpti.752Kata Kunci:
Data Akademik, Data Non-Akademik, Machine Learning, Naïve Bayes Classifier, Prediksi Ketuntasan SiswaAbstrak
Peningkatan kualitas pendidikan memerlukan identifikasi dini siswa berisiko tidak tuntas. Penelitian ini bertujuan mengembangkan sistem prediksi ketuntasan siswa menggunakan metode Naive Bayes dengan memanfaatkan data akademik (nilai ujian, absensi) dan non-akademik (partisipasi ekstrakurikuler). Data historis dari 150 siswa SMA dianalisis melalui pra-pemrosesan (normalisasi, penanganan data hilang) dan validasi menggunakan 10-fold cross-validation. Hasil menunjukkan akurasi sistem mencapai 85,2%, presisi 83%, dan recall 87%, dengan nilai ujian sebagai faktor dominan (feature importance = 0,45). Sistem ini memberikan prediksi objektif untuk membantu guru melakukan intervensi tepat waktu, meningkatkan efektivitas pembelajaran. Temuan ini menegaskan potensi Naive Bayes dalam analisis data pendidikan multidimensi.
Unduhan
Referensi
S. A. Apostu, Sustainable Education is the Key for Economic Growth? Case of Europe. 2024.
S. Kumar and B. Ahuja, “A relative analysis of data mining approaches for student’s academics performance prediction,” in Proc. 4th Int. Conf. Advances in Computing, Communication Control and Networking (ICAC3N), 2022, pp. 840–845, doi: 10.1109/ICAC3N56670.2022.10074507.
N. Priyasadie and S. M. Isa, “Educational data mining in predicting student final grades on standardized Indonesia Data Pokok Pendidikan data set,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 12, pp. 212–216, 2021, doi: 10.14569/IJACSA.2021.0121227.
Christian, I. N. Putri, P. Maharani, Y. E. Kurniawati, and R. A. Putri, “Application of data mining to predict student learning outcomes in Padang Panjang,” in Proc. Int. Conf. Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), 2024, doi: 10.1109/ICECCME62383.2024.10796870.
Hartatik, K. Kusrini, and A. B. Prasetio, “Prediction of student graduation with Naive Bayes algorithm,” in Proc. 5th Int. Conf. Informatics and Computing (ICIC), 2020, doi: 10.1109/ICIC50835.2020.9288625.
A. A. M. E. Hussen and A. Saikhu, “Modeling of student graduation prediction using the Naive Bayes classifier algorithm,” in Proc. 3rd Int. Conf. Creative Communication and Innovative Technology (ICCIT), 2024, doi: 10.1109/ICCIT62134.2024.10701117.
P. A. Amahan, “Employing Naive Bayes algorithm in the analysis of students academic performances,” in ACM Int. Conf. Proc. Series, 2024, pp. 58–61, doi: 10.1145/3647722.3647731.
V. Nakhipova, H. I. Bulbul, Y. Kerimbekov, L. Suleimenova, Z. Umarova, and E. Adylbekova, “Integration of collaborative filtering into Naive Bayes method to enhance student performance prediction,” Int. J. Inf. Commun. Technol. Educ., vol. 20, no. 1, 2024, doi: 10.4018/IJICTE.352512.
T. N. Viet, H. L. Minh, L. C. Hieu, and T. H. Anh, “The Naïve Bayes algorithm for learning data analytics,” Indian J. Comput. Sci. Eng., vol. 12, no. 4, pp. 1038–1043, 2021, doi: 10.21817/indjcse/2021/v12i4/211204191.
Misinem, T. B. Kurniawan, D. A. Dewi, M. Z. Zakaria, and C. M. A. Nazmi, “Leveraging data analytics for student grade prediction: A comparative study of data features,” J. Appl. Data Sci., vol. 5, no. 4, pp. 2025–2038, 2024, doi: 10.47738/jads.v5i4.442.
H. Ma, J. Liu, J. Zhang, and J. Huang, “Estimating the compressive strength of cement?based materials with mining waste using support vector machine, decision tree, and random forest models,” Adv. Civ. Eng., vol. 2021, no. 1, Art. no. 6629466, 2021.
H. Syahputra and A. Wibowo, “Comparison of support vector machine (SVM) and random forest algorithm for detection of negative content on websites,” J. Ilm. Tek. Elektro Komput. Inform. (JITEKI), vol. 9, no. 1, pp. 165–173, 2023.
A. Damayunita, R. S. Fuadi, and C. Juliane, “Comparative analysis of Naive Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) algorithms for classification of heart disease patients,” J. Online Inform., vol. 7, no. 2, pp. 219–225, 2022.
M. J. Nayeem, S. Rana, F. Alam, and M. A. Rahman, “Prediction of hepatitis disease using K-nearest neighbors, Naive Bayes, support vector machine, multi-layer perceptron and random forest,” in Proc. 2021 Int. Conf. Inf. Commun. Technol. Sustainable Develop. (ICICT4SD), Feb. 2021, pp. 280–284.