Jurnal Pendidikan dan Teknologi Indonesia (JPTI) DOI: https://doi.org/10.52436/1.jpti.1183
Vol. 5, No. 11, November 2025, Hal. 3505-3517 p-ISSN: 2775-4227
e-ISSN: 2775-4219

Pengembangan Backend Pada Sistem Pembayaran Virtual Account dengan REST API
Menggunakan Metode Extreme Programming di UHAMKA

Irsana Ahmad™', Ade Davy Wiranata’

12Teknik Informatika, Universitas Muhammadiyah Prof. DR. HAMKA, Indonesia
Email: lirsanaahmad@uhamka.ac.id, 2adedavy@uhamka.ac.id

Abstrak

Penelitian ini mengembangkan backend API untuk sistem pembayaran virtual account (VA) menggunakan
pendekatan REST API dan metode Extreme Programming (XP). Bahasa pemrograman Go (Golang) dipilih karena
kemampuannya dalam menangani permintaan secara efisien dan paralel. Sistem dirancang untuk mendukung
proses pembayaran pendidikan di Universitas Muhammadiyah Prof. Dr. Hamka (UHAMKA). Proses
pengembangan mengikuti prinsip XP yang menekankan iterasi pendek, kolaborasi intensif, dan pengujian
berkelanjutan. Backend terdiri dari dua layanan utama, yaitu inquiry untuk pengecekan tagihan mahasiswa dan
payment untuk pencatatan transaksi pembayaran dari bank. Integrasi dilakukan dengan database internal agar
proses pencatatan tagihan dan transaksi berjalan otomatis dan realtime. Pengujian menunjukkan bahwa sistem
mampu merespons permintaan inquiry dan payment dari bank secara cepat dan akurat. Penerapan sistem ini
meningkatkan efisiensi pengelolaan pembayaran, meminimalkan kesalahan pencatatan, serta mendukung otomasi
layanan administrasi akademik. Hasil penelitian ini menunjukkan bahwa kombinasi metode XP dan arsitektur
REST API efektif dalam membangun layanan backend yang andal dan terintegrasi untuk kebutuhan pembayaran
pendidikan.

Kata kunci: Backend, Extreme Programming, Golang, REST API, Sistem Pembayaran, Virtual Account

Backend Development in Virtual Account Payment Systems with REST API Using Extreme
Programming Methods at UHAMKA

Abstract

This study develops a backend API for a virtual account (VA) payment system using the REST API approach and
the Extreme Programming (XP) methodology. The backend is implemented using the Go (Golang) programming
language due to its efficiency and ability to handle concurrent processes. The system is designed to support
education payment services at Universitas Muhammadiyah Prof. Dr. Hamka (UHAMKA). The development
process follows XP principles, emphasizing short iterations, intensive collaboration, and continuous testing. The
backend consists of two main services: inquiry, for retrieving student billing information, and payment, for
recording transactions from partner banks. Integration with the university's internal database enables automated
and real-time processing of billing and transaction data. Testing results show that the system accurately and
efficiently responds to inquiry and payment requests from banks. The implementation of this backend improves
payment management efficiency, reduces the potential for transaction errvors, and supports automation in
academic administrative services. The results demonstrate that combining the XP methodology with a REST
architecture is effective for developing a reliable and integrated backend service for education payment systems.

Keywords: Backend, Extreme Programming, Golang, Payment System, REST API, Virtual Account

1. PENDAHULUAN

Universitas Muhammadiyah Prof. Dr. Hamka (UHAMKA) merupakan perguruan tinggi swasta milik
Persyarikatan Muhammadiyah yang berada di Jakarta. Seiring dengan kemajuan teknologi, sistem pembayaran di
berbagai sektor terus mengalami perkembangan, termasuk dalam dunia pendidikan. Universitas Muhammadiyah
Prof. Dr. HAMKA (UHAMKA), sebagai salah satu institusi pendidikan tinggi, telah mengadopsi sistem
pembayaran digital melalui virtual account untuk memfasilitasi pembayaran uang kuliah oleh mahasiswa. Dan
metode pembayaran melalui virtual account mempunyai kelebihan praktis, simple tanpa harus melakukan
konfirmasi pembayaran, dan dapat dipakai kapanpun dan dimanapun [1].

3505

https://doi.org/10.52436/1.jpti.1183

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
e-ISSN: 2775-4219

Hingga saat ini, UHAMKA telah menjalin kerja sama dengan dua bank, yaitu Bank Muamalat dan Bank
Syariah Indonesia (BSI), dalam menyediakan layanan pembayaran melalui virtual account. Namun, sejalan dengan
kebijakan dari Pimpinan Pusat (PP) Muhammadiyah, Muhammadiyah memutuskan untuk mengalihkan dananya
dengan menyebarkan ke sejumlah bank syariah yang beroperasi di Indonesia. Keputusan pengalihan dana tersebut
tertuang dalam memo Muhammadiyah Nomor 320/1.0/A/2024 [2]. Oleh karena itu, UHAMKA sebagai salah satu
amal usaha Muhammadiyah turut menyesuaikan kebijakan tersebut dengan memperluas kerja sama layanan
pembayaran melalui virfual account dengan bank syariah lain yang beroperasi di Indonesia. Langkah ini dilakukan
untuk mendukung kebijakan pusat dan memberikan lebih banyak pilihan pembayaran kepada mahasiswa.

Sistem yang ada perlu dikembangkan untuk integrasi dengan bank baru tanpa mengganggu layanan
pembayaran yang sudah berjalan. Solusinya adalah membangun layanan berbasis REST API menggunakan bahasa
Go. REST API dipilih karena fleksibel, kompatibel lintas platform, dan mudah diskalakan [3][4]. Dengan Go,
layanan ini diharapkan memiliki performa tinggi, efisien, dan mudah dipelihara [3].

REST API merupakan pendekatan arsitektur dalam pengembangan layanan web yang memungkinkan
komunikasi data antara sistem internal dengan sistem eksternal (seperti API bank) melalui protokol HTTP. REST
API memiliki kelebihan berupa kemudahan integrasi lintas platform, dukungan untuk berbagai format data
(terutama JSON), serta kemudahan dalam pemeliharaan dan pengembangan berkelanjutan [5]. Sementara itu,
Bahasa Go dipilih karena performanya yang tinggi, efisiensi dalam pengelolaan memori, serta kemampuannya
dalam menangani concurrent request secara optimal [3], yang sangat dibutuhkan dalam sistem transaksi seperti
layanan VA. Dengan menggunakan bahasa pemrograman Go, layanan API yang dikembangkan diharapkan
memiliki performa yang optimal, kode yang efisien, dan mudah untuk dipelihara.

Beberapa penelitian terdahulu yang relevan dengan penelitian ini dirangkum sebagai berikut: penelitian oleh
Rahmad Adhi Sasono dkk. pada tahun 2025 yang berjudul "Optimasi Web Service REST Pada Backend Aplikasi
Prospect Menggunakan Metode Extreme Programming" berhasil mengoptimalkan performa integrasi data dan
kecepatan respons sistem melalui penerapan arsitektur REST dan metode pengembangan Extreme Programming
(XP). Penggunaan REST API menggantikan RPC-API yang sebelumnya digunakan, menghasilkan layanan yang
lebih efisien, fleksibel, serta mempercepat proses pengembangan backend aplikasi prospect [6]. Selanjutnnya
Penelitian oleh Fadel Pamungkas dan Hari Setiaji pada tahun 2024 yang berjudul "Implementasi Clean
Architecture pada Pembuatan API Menggunakan Golang", penelitian ini berhasil membangun REST API dengan
struktur sistem yang lebih terorganisir dan mudah dipahami, serta menunjukkan hasil response time yang efisien,
yaitu rata-rata 22—79 ms tergantung ukuran data [7]. Selanjutnya penelitian oleh Irfan Rizq Dzaky Muhammad,
dan Irving V. Paputungan pada tahun 2024 yang berjudul “Pengembangan Backend Server Berbasis Arsitektur
REST API pada Sistem Transfer Dompet Digital” Penelitian ini berhasil mengembangkan sistem server-side untuk
transfer dana antar dompet digital menggunakan arsitektur REST API. Dengan memanfaatkan framework NestJS,
database MySQL, serta metode pengembangan Extreme Programming (XP), penelitian ini menghasilkan API yang
dapat digunakan oleh pengembang frontend dan mobile. Seluruh API diuji menggunakan BlackBox Testing dan
dinyatakan berfungsi dengan baik, mencakup kebutuhan sistem seperti autentikasi, pengelolaan pengguna,
transaksi, pengembalian dana, dan manajemen dompet digital [4]. Selanjutnya ada penelitian oleh Juan Angela
Alma, dan Agus Prihanto pada tahun 2024 yang berjudul “Implementasi Backend System Untuk Integrasi Payment
Gateway Pada Sistem Pembayaran Kost Menggunakan Express.js” Penelitian ini berhasil mengimplementasikan
sistem backend menggunakan Express.js untuk mengintegrasikan payment gateway Midtrans dalam sistem
pembayaran kost. Backend system dirancang untuk meningkatkan keamanan dengan menyimpan client key di sisi
server, sehingga tidak terekspos ke frontend [8]. Selanjutnya ada penelitian oleh Nurfigih, dan Intan kumalasari
pada tahun 2023 yang berjudul “Implementasi Host To Host Bca Untuk Transaksi Virtual Account Bpr Niaga
Menggunakan Restful Api” Penelitian ini menghasilkan aplikasi RESTful API menggunakan framework Spring
Boot dengan bahasa pemrograman Java yang mampu menerima pesan dalam format JSON dan mengonversinya
menjadi format ISO8583 untuk dikirim ke core banking BPR Niaga. Sistem ini memungkinkan nasabah BPR
Niaga untuk melakukan penyetoran secara online melalui seluruh kanal yang dimiliki oleh Bank BCA. Proses
pengujian menunjukkan bahwa fitur-fitur seperti token access, inquiry, dan payment berfungsi dengan baik.
Aplikasi ini mendukung transaksi virtual account secara efisien dan memperluas akses nasabah terhadap layanan
perbankan modern [9]. Selanjutnya ada penelitian oleh Dimas Kita Ladiba, Weda Adistianaya Dewa, dan Samsul
Arifin pada tahun 2021 yang berjudul “Analisis dan Pengembangan API Siakad Menggunakan Arsitektur Restful
Web Service pada Infrastruktur Microservice” Penelitian ini menghasilkan pengembangan API berbasis arsitektur
Restful Web Service yang diterapkan pada infrastruktur microservice untuk mendukung Sistem Informasi
Akademik (SIAKAD) di Kampus STIMATA. Hasil pengujian menunjukkan Sistem API berhasil mempermudah
pengembangan aplikasi multiplatform dengan rata-rata indeks interpretasi sebesar 95,3% dan Pengujian blackbox
memastikan bahwa sistem sudah dapat digunakan dengan baik meskipun terdapat beberapa kesalahan minor pada
implementasi tertentu [10]. Selanjutnya ada Penelitian oleh Moh. Anshori Aris Widya dan Nurul Aini pada tahun
2021 yang berjudul "Design of a Student Payment System Based on Virtual Account (Case Study at SMK NU Al-

3506

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
e-ISSN: 2775-4219

Hidayah Ngimbang)" yang berhasil mengembangkan sistem pembayaran pendidikan berbasis virtual account
(BRIVA) yang terintegrasi secara daring. Sistem ini terbukti lebih efisien dibandingkan metode konvensional
karena mampu mempercepat proses pembayaran, memudahkan pelaporan keuangan, serta mengurangi antrean dan
risiko kesalahan pencatatan [11]. Selanjutnya penelitian oleh Erry Julio dan Magdalena A. Ineke Pakereng pada
tahun 2021 yang berjudul "Implementasi API Payment Gateway Menggunakan Arsitektur Microservice" berhasil
membangun sistem payment gateway berbasis microservice yang dapat melakukan routing transaksi ke berbagai
bank secara otomatis. Arsitektur ini terbukti meningkatkan fleksibilitas, skalabilitas, dan keamanan layanan
melalui penggunaan JWT dan whitelist IP, serta memudahkan integrasi dengan bank baru melalui pemisahan
layanan per bank [12]. Selanjutnya ada penelitian oleh Nina Wulandari, Argo Wibowo, dan Budi Susanto pada
tahun 2021 yang berjudul "Penerapan RESTful API untuk Membangun Program Pembayaran Piutang
Menggunakan Otentikasi OAuth 2.0", penelitian ini berhasil membangun sistem pembayaran piutang
menggunakan RESTful API dan membuktikan bahwa metode otentikasi OAuth 2.0 memberikan performa yang
lebih stabil dibandingkan Basic Auth, dilihat dari response time dan jumlah request per detik dalam uji beban [13].
Selanjutnya ada penelitian oleh Padeli, Eduard Hotman Purba, dan Bonari Simanjuntak pada tahun 2020 yang
berjudul “Analisa Pembayaran Perkuliahan dengan Virtual Account pada Universitas Raharja” Penelitian ini
menganalisis penggunaan sistem Virtual Account sebagai metode pembayaran perkuliahan di Universitas Raharja.
Hasilnya menunjukkan bahwa penerapan Virtual Account dapat meningkatkan efektivitas dan efisiensi
pembayaran, baik bagi mahasiswa maupun pihak kampus. Sistem ini memudahkan pengelolaan data pembayaran
secara real-time dan mengurangi risiko kesalahan dibandingkan dengan sistem manual sebelumnya. Penelitian ini
merekomendasikan kolaborasi dengan pihak bank untuk mengintegrasikan API Virtual Account ke dalam sistem
kampus [1].

Dengan membangun backend yang berbasis REST API, UHAMKA dapat mengembangkan sistem
pembayaran VA yang dapat diintegrasikan dengan berbagai bank baru secara bertahap, tanpa harus mengubah
struktur utama sistem. Hal ini akan memberikan fleksibilitas dalam pengelolaan layanan pembayaran dan
mendukung skalabilitas sistem ke depannya.

Penelitian ini bertujuan untuk menganalisis bagaimana penerapan arsitektur REST API dapat mendukung
sistem pembayaran digital di UHAMKA. Selain itu, penelitian ini diharapkan menjadi dokumentasi teknis dalam
pembuatan REST API untuk layanan virtual account, yang dapat dijadikan acuan dalam pengembangan sistem
serupa. Hasil penelitian ini diharapkan memberikan kontribusi nyata terhadap pengembangan sistem pembayaran
di UHAMKA secara berkelanjutan, sekaligus memperkuat ekosistem teknologi informasi yang ada di lingkungan
kampus.

2. METODE PENELITIAN

Release
Gambar 1. Alur Metode Extreme Programming (XP)

Extreme Programming (XP) adalah salah satu metode Agile yang paling banyak digunakan sejak pertama
kali diperkenalkan oleh Kent Beck pada tahun 1996 hingga saat ini. XP bertujuan menciptakan sebuah model
proses yang sederhana dan ringan, sehingga memungkinkan tim pengembang beradaptasi dengan cepat terhadap
perubahan kebutuhan. Dibandingkan dengan kerangka kerja Agile lainnya, XP dikenal sebagai metodologi yang
paling terfokus dan spesifik dalam menerapkan praktik rekayasa perangkat lunak yang baik dan disiplin [14].

Extreme Programming (XP) adalah salah satu metode dalam SDLC yang menekankan pada iterasi cepat,
umpan balik langsung, dan kolaborasi tim yang erat. XP cocok digunakan dalam pengembangan aplikasi modern,
termasuk pengembangan API karena fleksibilitasnya terhadap perubahan kebutuhan [15]. Perancangan sistem API
dilakukan dengan menggunakan pendekatan Extreme Programming (XP), Pendekatan ini sangat sesuai untuk
pengembangan backend karena memungkinkan penyesuaian secara dinamis terhadap perubahan kebutuhan sistem.

Gambar 1 menjelaskan siklus proses metode Extreme Programming yang diterapkan: dimulai dari Planning,

3507

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
e-ISSN: 2775-4219

dilanjutkan Design, Coding, Testing, dan diakhiri dengan Release. Setiap iterasi bersifat berulang dengan

Refactoring sebagai bagian dari perbaikan berkelanjutan. Tahapan XP yang diimplementasikan dalam penelitian

ini ditunjukkan pada Gambar 1 dan dijelaskan sebagai berikut:

1) Perencanaan (Planning) merupakan Fase awal dalam metode Extreme Programming (XP) adalah tahap
perencanaan, di mana terjadi kolaborasi erat antara pengembang dan pelanggan. Pada tahap ini, kedua belah
pihak bekerja sama untuk merumuskan kebutuhan sistem, menetapkan fitur-fitur utama, menentukan
fungsionalitas yang harus disediakan, serta memperkirakan waktu penyelesaian proyek. Pengembang mulai
dengan mengumpulkan kebutuhan sistem dalam bentuk cerita pengguna (user stories), yang menggambarkan
fitur dari sudut pandang pengguna [14]. Tahapan perencanaan dilakukan dengan merancang kebutuhan API
yang akan digunakan. Backend developer menyusun daftar endpoint yang diperlukan serta fungsionalitas
yang harus didukung oleh API.

2) Perancangan (Design) merupakan Kegiatan pemodelan sistem dilakukan berdasarkan hasil analisis
kebutuhan, yang kemudian divisualisasikan menggunakan Unified Modeling Language (UML). UML ini
mencakup berbagai jenis diagram, di antaranya Use Case Diagram untuk menggambarkan interaksi antara
pengguna dan sistem, serta Activity Diagram yang menunjukkan alur aktivitas atau proses bisnis dalam
sistem. Sementara itu, untuk pemodelan basis data digunakan Entity Relationship Diagram (ERD) [16].

3) Pengkodean (Coding) merupakan Tahap implementasi merupakan proses penerapan dari hasil desain model
sistem ke dalam bentuk kode program yang nyata. Hasil dari proses ini adalah prototipe yang dapat dijalankan
dan dievaluasi lebih lanjut [14]. pengembangan API ini menggunakan framework Echo dengan bahasa
pemograman Go Language (Golang).

4) Pengujian (Testing) merupakan Fase terakhir dalam metode Extreme Programming (XP) adalah pengujian,
di mana setiap kode harus dilengkapi dengan unit test dan wajib lolos pengujian tanpa error sebelum
diimplementasikan ke lingkungan pengguna. Jika ditemukan masalah, pengembang akan melakukan
refactoring untuk memperbaiki kode tanpa mengubah fungsinya [16]. Pengujian dilakukan terhadap dua
endpoint utama: /inquiry dan /payment menggunakan metode black box testing. Setiap endpoint diuji
sebanyak 10 kali untuk masing-masing dari tiga skenario: input valid, input tidak valid, dan input kosong.
Pengujian dilakukan dengan Postman dan hasilnya dicatat berdasarkan status HTTP respons serta isi body
respons JSON. Suatu pengujian dianggap berhasil jika sistem memberikan respons yang sesuai ekspektasi
(kode status 200/400/500) dan struktur respons JSON lengkap tanpa error.

Selain itu, Basis data menggunakan SQL Server. Kode editor menggunakan Visual Studio Code. Pengujian
API dilakukan menggunakan Postman pada lingkungan server lokal yang dijalankan di laptop.

3. HASIL DAN PEMBAHASAN
3.1. Hasil

3.1.1. Perancangan (Planning)

Tahapan perencanaan dilakukan dengan merancang kebutuhan API yang akan digunakan. Berdasarkan tabel
1 kolom Fitur berisi identifikasi berdasarkan kebutuhan sistem yang berkaitan langsung dengan proses bisnis.
Kebutuhan merujuk pada metode HTTP yang digunakan dalam pemanggilan API, sedangkan Deskripsi
menjelaskan fungsi dari masing-masing fitur API tersebut.

Tabel 1. Kebutuhan Fungsional API

Fitur Kebutuhan Deskripsi
Inquiry POST APT untuk proses pengecekan tagihan pembayaran
Payment POST API untuk proses pembayaran

3.1.2. Perancangan (Design)

a) Unified Modeling Language (UML)
UML (Unified Modeling Language) merupakan bahasa pemodelan standar yang digunakan untuk
merancang, menggambarkan, dan mendokumentasikan sistem informasi berbasis objek dengan
menggunakan simbol atau notasi yang telah ditetapkan [17].

3508

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
e-ISSN: 2775-4219

e Use Case Diagram

API virtual account transaction

: :\ melakukan
Mahasiswa pembayaran
extends

Pelnat invoica™,

) I
mengakses AP mclude———'_"/

A
include Bank
mengakses AP
payment
—
include. enyimpan daf
Backend transaksi

Gambar 2. Use Case Diagram Virtual Account Transaction

melihat tagihan
VA

Use Case Diagram adalah salah satu jenis diagram dalam UML yang menunjukkan interaksi antara
aktor (pengguna atau sistem lain) dengan sistem, serta menjelaskan bentuk interaksi atau layanan yang
tersedia bagi pengguna [18]. Gambar 2 menggambarkan proses interaksi antara mahasiswa dan sistem
API backend virtual account dalam melakukan transaksi pembayaran pendidikan. Mahasiswa dapat
melihat virtual account (VA) dan tagihan yang harus dibayar. Setelah itu, mahasiswa melakukan proses
pembayaran, yang mencakup dua aktivitas utama, yaitu Mengakses API inquiry untuk memvalidasi
tagihan dan Mengakses API payment untuk melakukan pembayaran Setelah pembayaran berhasil,
sistem akan menyimpan data transaksi ke dalam basis data. Mahasiswa juga memiliki opsi untuk melihat
invoice pembayaran, yang merupakan ekstensi dari proses pembayaran.

e Activity Diagram

Gambar 3. Activity Diagram VA Transaction

Activity Diagram digunakan untuk memodelkan alur kegiatan dalam perangkat lunak, di mana urutan
proses digambarkan secara vertikal sesuai dengan jalannya aktivitas [18]. dari Gambar 3 dapat diketahui
Dimana Mahasiswa adalah Pihak yang melakukan pembayaran tagihan kuliah melalui VA. Bank adalah
Sistem perantara yang menerima permintaan pembayaran dari mahasiswa dan meneruskannya ke
backend kampus. Backend adalah Sistem milik kampus yang menyimpan dan mengelola data tagihan
dan pembayaran mahasiswa. Langkah pertama mahasiswa melihat tagihan dan nomor VA pada halaman
akademik yang disediakan kampus, setelahnya Mahasiswa Melakukan Pembayaran, lalu Bank
Melakukan Inquiry ke Backend, lalu Backend Melakukan Pengecekan Data, lalu Bank Menerima
Response Inquiry, lalu Bank Melakukan API Payment ke Backend, lalu Backend Menyimpan
Transaksi, lalu Backend Memberikan Response Payment, lalu Bank Menampilkan Hasil Payment,
terakhir Mahasiswa Mendapatkan Bukti Pembayaran.

b) Entity Relationship Diagram (ERD)
Entity Relationship Diagram (ERD) merupakan sebuah diagram dengan notasi grafis yang digunakan dalam
perancangan basis data untuk menggambarkan hubungan antar data. ERD berfungsi sebagai alat bantu dalam

3509

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
e-ISSN: 2775-4219

proses perancangan database serta memberikan visualisasi mengenai cara kerja database yang akan dibangun
[19].

e Inquiry

T_MAHASISWA
NIM

NAMA V_FAKJURPROGX
KODEPROGDI KODEPROGDI

NAMAPROGDI
T_AKM

N NAMAFAK

KODEKOMP
>_\; T_KOMP
KODEKOMP

NAMAKOMP

KODEBANK

KODEPAY

Gambar 4. ERD Inquiry

Gambar 4 menggambarkan proses inquiry pembayaran virtual account mahasiswa, sistem melakukan
pengecekan terhadap data mahasiswa, program studi, dan tagihan yang dimiliki. Untuk mendukung
proses tersebut. Tabel T_ MAHASISWA untuk Menyimpan data dasar mahasiswa (NIM, Nama, Kode
Program Studi), Berelasi dengan V. FAKJURPROGX (melalui KODEPROGDI) untuk mendapatkan
detail program studi/fakultas mahasiswa dan Berelasi dengan T AKM (melalui NIM) untuk
menunjukkan tagihan/komponen pembayaran yang dimiliki mahasiswa. Selanjutnya
V_FAKJURPROGX untuk Menyediakan informasi detail Program Studi dan Fakultas. Lalu tabel
T AKM untuk Mencatat komponen-komponen pembayaran yang menjadi tagihan untuk setiap
mahasiswa (misal SPP semester ini), Berelasi dengan T _KOMP (melalui KODEKOMP) untuk
menjelaskan jenis komponen tagihan tersebut (misal: BOP, SKS). Terakhir tabel T KOMP untuk
Menyimpan daftar dan detail dari setiap jenis komponen pembayaran (nama komponen, bank terkait,
kode pembayaran).

e Payment

T_MAHASISWA T_CMBKOMP

M 1 4|¢ KODEBANK
\bl_payGaleway

retank

Gambar 5. ERD Payment

Setelah mahasiswa melakukan pembayaran melalui virtual account, sistem akan mencatat informasi
transaksi pembayaran tersebut untuk keperluan rekonsiliasi dan verifikasi. Berdasarkan Gambar 5 tabel
T MAHASISWA Merepresentasikan mahasiswa yang melakukan pembayaran, Berelasi dengan
tbl_payGateway (melalui NIM) untuk mencatat bahwa transaksi pembayaran ini dilakukan oleh/untuk
mahasiswa tersebut. Lalu tabel T CMBKOMP untuk Menyimpan kode bank yang terlibat dalam
pembayaran, Berelasi dengan tbl payGateway (melalui KODEBANK) untuk menunjukkan bank mana
yang memproses transaksi. Terakhir tabel tbl payGateway untuk Tabel utama untuk mencatat setiap
transaksi pembayaran yang melalui gateway, termasuk detail seperti jumlah, tanggal, nomor VA, status,
dan lain-lain.

3510

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
e-ISSN: 2775-4219

3.1.3. Pengkodean (Coding)

Proses implementasi API dilakukan sesuai hasil perancangan dengan menggunakan bahasa pemrograman
Go. Definisi Go sebagai bahasa pemrograman mencakup kemampuan untuk mengembangkan perangkat lunak
yang efisien dan cepat, dengan sintaks yang mudah dipahami [20]. Go menggunakan pendekatan konkurensi yang
ringan untuk mengatasi masalah skalabilitas, serta menyediakan garbage-collector yang efisien untuk mengelola
memori [3]. Pada penelitian ini juga menggunakan framework Echo. Framework merupakan kerangka kerja berisi
kumpulan fungsi yang siap digunakan untuk tujuan tertentu dan framework Echo adalah kerangka kerja yang kuat
dan serbaguna untuk membangun aplikasi yang skalabel dan berperforma tinggi menggunakan bahasa
pemrograman Go [21]. Penulisan kode mengikuti prinsip clean code agar mudah dipelihara dan dikembangkan.

a) Struktur Folder

Gambr 6. Struktur Folder

Pada awal pengembangan, proyek Go diinisialisasi menggunakan perintah go mod init, yang akan membuat
file go.mod sebagai penanda modul utama aplikasi. Selanjutnya, menyusun struktur folder yang rapi dan
terorganisir berdasarkan pendekatan clean architecture, untuk memisahkan tanggung jawab antar komponen
seperti yang digambarkan pada Gambar 6. Folder utama seperti app/ dibuat untuk menyimpan file konfigurasi
dan pengaturan inti aplikasi. Di dalamnya terdapat file main.go, yang berperan sebagai entry point. Di dalam
main.go, aplikasi akan memanggil fungsi inisialisasi yang berada di file server.go. Lalu framework Echo
diinstal dengan go get github.com/labstack/echo/v4.

b) Clean Architecture

Act as Domain or
Model or Entity

Domain/Model/Entity

- Y Y L J

' repository |—»| Usecase/Service |—»{ Controller/Delivery l¢——
RDEMS

Business Logic
Happen here

Gambar 7. Architecture Component Diagram

Diagram pada Gambar 7 menggambarkan arsitektur pengembangan backend sistem virtual account yang
mengadopsi pola Clean Architecture. Clean Architecture adalah pendekatan arsitektur perangkat lunak yang
menekankan pemisahan tanggung jawab dalam beberapa lapisan, sehingga sistem menjadi lebih mudah
dipahami, diuji, dan dikembangkan. Pada proyek ini memiliki 4 layer utama yaitu Models Layer, Repository
Layer, Use Case Layer, dan Delivery Layer [7].

1) Models Layer
Berisi objek domain atau business model inti dari aplikasi. Pada proyek saya berisi struct go contohnya
seperti tabel 2.

3511

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
e-ISSN: 2775-4219

Tabel 2. Kebutuhan Fungsional API
Kode Program

type RequestBodyBank struct {
REFFNUMBER string ‘json:"reffnumber"*
TIMESTAMP string ‘json:"timestamp"*
CHANNELID string ‘json:"channelID"*
COMPANYCODE string ‘json:"companyCode""
CHANNELED string ‘json:"channeled""
AMOUNT string ‘json:"amount"
NUMBERVA string ‘json:"numberVa"
NIM string “json:"nim"*
TYPEINQ string ‘json:"typelnq""
PROCODE string ‘json:"procode""
REKDEBT string ‘json:"rekdebt"
TERMINALID string ‘json:"terminalID"*
TID string “json:"tid""
TRXDATETIME string ‘json:"trxDateTime""
USERNAME ' string 'json:"username""
PASSWORD string ‘json:"Password""
KEY string “json:"key""
SOF string ‘json:"sof""

2) Repository Layer
Repository berfungsi sebagai lapisan penghubung antara sistem dengan database, baik relational
(RDBMS) maupun NoSQL. Komponen ini menangani semua operasi CRUD, dan dipanggil oleh
usecase untuk mengambil atau menyimpan data, contohnya seperti tabel 3.

Tabel 3. Contoh Kode Program Repository
Kode Program

func (m mssqlTransactionRepo) PaymentBank(ctx context.Context, args domain.RequestBodyBank) (domain.DataStoreBank, error) {
var transaction domain.DataStoreBank
sqlExec := domain.ExecPaymentBank()
rows, err := m.DB.QueryContext(ctx, sqlExec,
args. TIMESTAMP, args. CHANNELID, args. REFFNUMBER, args. COMPANYCODE, args. CHANNELED, args.NIM,
args. AMOUNT, args. TYPEINQ, args. PROCODE, args. TERMINALID)
if err 1= nil {
return transaction, err
}

defer func() {
errRow := rows.Close()
if errRow != nil {
return
}
10

if rows.Next() {
err := rows.Scan(&transaction.STATUS)
iferr !=nil {
return transaction, err

}

}

return transaction, nil

3) Use Case Layer
Usecase berisi logika bisnis spesifik apa yang boleh dan tidak boleh dilakukan. Usecase akan
memanggil fungsi repository untuk menyimpan/membaca data, dan melakukan proses seperti validasi
atau transformasi data, contohnya seperti tabel 4.

Tabel 4. Contoh Kode Program Use Case
Kode Program

func (s transactionUseCase) PaymentBank(ctx context.Context, args domain.RequestBodyBank) (domain.DataStoreBank, error) {
ctx, cancel := context.WithTimeout(ctx, s.contextTimeout)
defer cancel()

transaction, err := s.transactionRepo.PaymentBank(ctx, args)
if err I=nil {
return domain.DataStoreBank {}, err

}

// Perform operation is a function that'll be executed after the transaction is fetched.
if err := utils.PerformOperation(ctx); err != nil {

return domain.DataStoreBank {}, err
}

return transaction, nil

3512

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
e-ISSN: 2775-4219

4) Delivery Layer
Delivery merupakan lapisan paling luar yang menangani interaksi dengan client. Dalam proyek ini,
komunikasi dilakukan melalui REST API menggunakan framework Echo. Delivery menerima
permintaan HTTP, memvalidasi input, memanggil usecase yang relevan, lalu mengembalikan response
ke client, contohnya seperti tabel 5.

Tabel 5. Contoh Kode Program Delivery
Kode Program

if inquiry NIM == "" {
utils.InsertLog(file, d.Log, "Bill ID not found. Refno: "+body. REFFNUMBER, "error", c)
uhamka := domain.ResponsePaymentEducation {
BILLDETAILS: domain.BillDetailsBank {
BILLNAME: ",
BILLAMOUNT:
BILLAMOUNTPAY: ",
BILLAMOUNTBAYAR: "",
BILLID: ",
TAHUNID: ",
BILLNAMEID: ",
1B
REFFNUMBER: body.REFFNUMBER,
TIMESTAMP: time.Now().In(utils.CurrentTimeLoc()). Format("2006-01-02 15:04:05"),
ERRORCODE: bank.RC_BILL_ID_NOT_FOUND,
RESPONSECODE: bank.RC_BILL_ID_NOT_FOUND,
RESPONSEDESC: bank.DESC_BILL_ID_NOT_FOUND + " Bill ID not found",
STATUSDESCRIPTION: "",
NIM: body.NIM,
PAYMENTAMOUNT: body.AMOUNT,
USERLOGIN: "
TRANSACTIONID: ",
PASSWORD: body.PASSWORD,
SEQNO:
CHANNELID: body. CHANNELID,

}
return ¢.JSON(http.StatusOK, uhamka)

¢) RunProgram

Gambar 8. menjalankan Program Golang dengan Framework Echo

Jika proses coding sudah selesai dan tidak ditemukan error maka untuk menjalankan program dengan
menggunakan perintah go run main.go, jika program berjalan tanpa kendala makan akan tampil seperti
Gambear 8.

3.1.4. Pengujian (Testing)

a) Pengujian Dengan Postman
Postman adalah alat untuk pengujian API yang memungkinkan pengembang untuk menguji endpoint,
mengotentikasi permintaan, dan memverifikasi respons. Postman mendukung berbagai format data, seperti
JSON dan XML, serta memfasilitasi pengujian API secara menyeluruh [3].

e Inquiry

Gambar 9. Hasil hit endpoint inquiry pada postman

3513

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227

e-ISSN: 2775-4219

Berdasarkan Gambar 9 hasil pengujian API bekerja sesuai harapan. Permintaan yang dikirim berhasil
mengembalikan data mahasiswa sesuai dengan NIM yang diminta, lengkap dengan informasi fakultas,
prodi, dan nominal tagihan. Status transaksi mengindikasikan bahwa inquiry berhasil dan sistem
backend dapat membaca data mahasiswa dari database.

e Payment

Gambar 10. Hasil hit endpoint payment pada postman

Berdasarkan Gambar 10 transaksi payment berhasil dilakukan untuk mahasiswa dengan NIM:
9074042103015061. Nilai pembayaran 200000 diterima sistem dan diproses tanpa kesalahan
(errorCode: "00"). Response menunjukkan bahwa API backend dapat menerima dan memproses
pembayaran sesuai dengan standar virtual account.

b) Pengujian Dengan Black Box
Black box testing, yang juga dikenal sebagai Behavioral Testing, merupakan metode pengujian perangkat
lunak yang berfokus pada pengamatan hasil dari input dan output tanpa memeriksa struktur internal kode
program. Pengujian ini biasanya dilakukan pada tahap akhir pengembangan untuk memastikan bahwa
perangkat lunak berfungsi sebagaimana mestinya [22]. Pengujian dilakukan terhadap dua endpoint utama
dalam sistem backend Virtual Account UHAMKA, yaitu: inquiry dan payment.
Berikut merupakan hasil dari pengujian black box pada endpoint yang bisa dilihat pada tabel 6.
Tabel 6. Pengujian Endpoint Menggunakan Blackbox
No Skenario Input (Field Penting) Output yang Diharapkan Status
Inquiry endpoint: /transaction/nama-bank /dev/education/inquiry
1 Inquiry dengan data ~ nim: 9074042103015061 200, return detail tagihan VA LULUS
lengkap dan NIM
valid
2 Inquiry dengan NIM nim: 9999999999999999 "statusDescription": "Bill ID not LULUS
tidak terdaftar found.",
3 Inquiry dengan NIM nim: "" "statusDescription": "Format error. LULUS
kosong Payloads validation failed",
4 Inquiry dengan "channellD": "" "statusDescription": "Format error. LULUS
channellD Payloads validation failed",
Kosong
5 Inquiry dengan "companyCode": "" "statusDescription": "Format error. LULUS
companyCode Payloads validation failed",
Kosong
6 Inquiry dengan "typelnq": "" "statusDescription": "Format error. LULUS
typelnq Kosong Payloads validation failed",
7 Inquiry dengan "procode": "" "statusDescription": "Format error. LULUS
procode Kosong Payloads validation failed",
8 Inquiry dengan "terminal[D": "" "statusDescription": "Format error. LULUS
terminallD Kosong Payloads validation failed",

3514

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
e-ISSN: 2775-4219

9 Inquiry dengan "reffnumber": "" "statusDescription": "Format error. LULUS
reffnumber Kosong Payloads validation failed",

10 Inquiry dengan "trxDateTime":"" "statusDescription": "Format error. LULUS
trxDateTime Kosong Payloads validation failed",

Payment endpoint: /transaction/mega-syariah/dev/education/payment
11 Payment dengan data nim: 9074042103015061, 200, Return response detail paymaent LULUS

valid amount: 200000 VA
12 Payment dengan amount: "300000" "responseDesc": "Invalid full amount. =~ LULUS
amount lebih dari Payment not equal total nominal.
billAmount Payment must be <= Tagihan",
13 Payment dengan NIM nim: 9999999999999999 "responseDesc": "Bill ID not found. LULUS
salah Bill ID not found",

14 Payment dengan nim "nim": "" "responseDesc": "Format error. LULUS
Kosong Payloads validation failed",

15 Payment dengan "channellD": "" "responseDesc": "Format error. LULUS
channellD Kosong Payloads validation failed",

16 Payment dengan "reffnumber”: "" "responseDesc": "Format error. LULUS
reffnumber Kosong Payloads validation failed",

17 Payment dengan "companyCode": "" "responseDesc": "Format error. LULUS
companyCode Payloads validation failed",

Kosong

18 Payment dengan "typelng": "" "responseDesc": "Format error. LULUS
typelng Kosong Payloads validation failed",

19 Payment dengan "terminalID": "" "responseDesc": "Format error. LULUS
terminallD Kosong Payloads validation failed",

20 Payment dengan "procode": "" "responseDesc": "Format error. LULUS
procode Kosong Payloads validation failed",

3.2. Pembahasan

Request Rﬂq uest
e
Client
Re'.spcunse Re'.spcunse
Gambar 11. Cara Kerja API

Berdasarkan Gambar 11, API (Application Programming Interface) memfasilitasi aplikasi yang berbeda
untuk saling terhubung dan bekerja sama secara serentak [12]. REST (Representational State Transfer) merupakan
arsitektur standar dalam pengembangan API untuk layanan web, yang memungkinkan sistem melakukan
permintaan guna mengakses dan mengelola sumber daya melalui protokol HTTP. Gaya arsitektur REST API
menetapkan seperangkat prinsip dan aturan dalam pembuatan layanan web. Format data seperti JSON atau XML
dalam REST API dapat dideskripsikan lebih lanjut menggunakan modeling language tertentu untuk
merepresentasikan struktur dan kontennya [13]. Sebagai backend developer, peran utama adalah membangun dan
mengelola API agar dapat melayani permintaan data maupun fungsi dari sisi client secara efisien, aman, dan
terstruktur. Proses komunikasi API dimulai dari client, Saat pengguna melakukan suatu aksi (Hit API), maka client
akan mengirimkan HTTP request ke endpoint API yang telah disediakan. API yang dibuat oleh backend developer
kemudian menerima permintaan tersebut dan meneruskannya ke server. Di sinilah logika bisnis dijalankan.
Misalnya, API dapat mengambil data mahasiswa dari basis data, memvalidasi input, atau memproses suatu
transaksi. Setelah proses di server selesai, hasilnya dikemas dalam bentuk response (umumnya dalam format
JSON) yang kemudian dikirimkan kembali ke API. Selanjutnya, API meneruskan response ini ke client agar dapat
ditampilkan kepada pengguna dalam bentuk antarmuka yang mudah dipahami [4].

JSON (JavaScript Object Notation) adalah format pertukaran data yang ringan dan mudah dibaca oleh
manusia serta mudah diproses oleh mesin. JSON sering digunakan dalam komunikasi antara client dan server pada
REST API karena formatnya yang sederhana dan terstruktur [13].

Sistem backend API yang dibangun memiliki sejumlah kelebihan sebagai berikut:

1) Struktur Modular: Penerapan Clean Architecture memisahkan logika bisnis, pengelolaan data, dan antarmuka
sehingga memudahkan perawatan dan pengembangan lanjutan.

3515

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
e-ISSN: 2775-4219

2) Performa Ringan: Penggunaan bahasa Go (Golang) memungkinkan penanganan concurrent request dengan
efisiensi tinggi.

3) Integrasi Real-time: Sistem mampu merespons permintaan inquiry dan payment dari bank secara otomatis
dan real-time.

4) Pengujian Fleksibel: Penggunaan metode black box testing melalui Postman memungkinkan pengujian cepat
terhadap berbagai skenario permintaan tanpa bergantung pada struktur internal kode.

Dibandingkan penelitian sebelumnya, terdapat beberapa perbedaan dan keunggulan misalnya dalam studi
oleh Widya & Aini (2021) yang merancang sistem pembayaran Virtual Account tingkat SMK menggunakan
metode R&D dan polling bank, namun belum mengimplementasikan API backend secara modular dan real-time
[11]. Sementara itu, dalam studi oleh Sasono et al. (2025) yang menerapkan XP untuk optimasi REST web service,
dengan hasil peningkatan performa, tetapi penerapannya belum spesifik pada sistem pembayaran pendidikan [6].
Oleh karena itu, penelitian ini melengkapi kekosongan tersebut dengan mengimplementasikan backend API VA
menggunakan Golang dan XP, lengkap dengan pengujian black-box, Clean Architecture, dan integrasi real-time
untuk sektor pendidikan tinggi. Meskipun sistem berjalan dengan baik dalam pengujian, terdapat beberapa
keterbatasan seperti Belum Diuji untuk Beban Tinggi (Stress/Load Test), Pengujian hanya dilakukan secara lokal
dalam jumlah request terbatas dan Belum Tersedia Mekanisme Fallback Saat integrasi dengan bank gagal
(misalnya, server down atau respons timeout), sistem saat ini belum memiliki mekanisme fallback seperti retry
otomatis, log antrian, atau notifikasi ke admin.

4. KESIMPULAN

Penelitian ini berhasil mengembangkan backend layanan pembayaran Virtual Account (VA) di Universitas
Muhammadiyah Prof. Dr. HAMKA (UHAMKA) menggunakan pendekatan REST API dan metode Extreme
Programming. Penerapan prinsip Clean Architecture menghasilkan sistem yang modular, mudah dirawat, dan siap
untuk dikembangkan lebih lanjut. Pengujian menunjukkan bahwa sistem berjalan sesuai fungsi yang diharapkan
dan mendukung proses pembayaran secara akurat dan efisien. Untuk pengembangan ke depan, disarankan sistem
perlu dikembangkan lebih lanjut dengan mekanisme autentikasi yang lebih aman dan menambahkan fitur
dashboard monitoring secara real-time.

DAFTAR PUSTAKA

[1] P. Padeli, E. H. Purba, and B. Simanjuntak, “Analisa Pembayaran Perkuliahan dengan Virtual Account
pada Universitas Raharja,” Cyberpreneurship Innovative and Creative Exact and Social Science, vol. 6,
no. 1, pp. 59-70, 2020, doi: 10.33050/cices.v6i1.878.

[2] Aditya P D and Rizal S N, “Kronologi PP Muhammadiyah Alihkan Dana dari BSI, Rencana sejak 2020,”
Kompas.com. Accessed: Oct. 17, 2024. [Online]. Available:
https://www.kompas.com/tren/read/2024/06/06/180000165/kronologi-pp-muhammadiyah-alihkan-dana-
dari-bsi-rencana-sejak-20207page=all

[3] F. Febriansyah, R. M. Awangga, and R. Andarsyah, MEMBANGUN RESTFUL API DENGAN GO.
Penerbit Buku Pedia, 2023. [Online]. Available: https://books.google.co.id/books?id=KYXOEAAAQBAJ

[4] I. R. D. Muhammad and I. V. Paputungan, “Pengembangan Backend Server Berbasis Arsitektur REST
API pada Sistem Transfer Dompet Digital,” Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi, vol.
3, no. 2, pp. 79-87, Jan. 2024, doi: 10.20885/snati.v3.i2.35.

[5] A. Ehsan, M. A. M. E. Abuhaliqa, C. Catal, and D. Mishra, “RESTful API Testing Methodologies:
Rationale, Challenges, and Solution Directions,” Applied Sciences (Switzerland), vol. 12, no. 9, p. 4369,
May 2022, doi: 10.3390/app12094369.

[6] R. Adhi Sasono, S. Purnama Kristanto, L. Hakim, and D. Yusuf, “Optimasi Web Service REST Pada
Backend Aplikasi Prospect Menggunakan Metode Extreme Programming,” Journal Zetroem, vol. 7, no.
1, pp. 96-103, 2025, doi: 10.36526/ztr.v7i1.4202.

[7] F. Pamungkas and H. Setiaji, “IMPLEMENTASI CLEAN ARCHITECTURE PADA PEMBUATAN API
MENGGUNAKAN GOLANG,” Jurnal INSTEK: Informatika Sains dan Teknologi, vol. 9, no. 1, pp. 80—
86, 2024, doi: 10.24252/instek.v9i1.46409.

[8] J. A. Alma and A. Prihanto, “Implementasi Backend System Untuk Integrasi Payment Gateway Pada
Sistem Pembayaran Kost Menggunakan Express.js,” Journal of Informatics and Computer Science, vol.
06, no. 01, pp. 167-178, 2024, doi: 10.26740/jinacs.vén01.p167-178.

3516

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227

e-ISSN: 2775-4219

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[20]

(21]

I. kumalasari, “IMPLEMENTASI HOST TO HOST BCA UNTUK TRANSAKSI VIRTUAL ACCOUNT
BPR NIAGA MENGGUNAKAN RESTFUL APL” JORAPI : Journal of Research and Publication
Innovation, vol. 1, no. 3, pp- 866-870, 2023, [Online]. Available:
https://jurnal.portalpublikasi.id/index.php/JORAPI/index

D. K. Ladiba, W. A. Dewa, and S. Arifin, “Analisis dan Pengembangan API Siakad Menggunakan
Arsitektur Restful Web Service pada Infrastruktur Microservice,” Prosiding Seminar SeNTIK, vol. 5, no.
1, pp. 255-265, 2021.

M. Anshori, A. Widya, N. Aini, and K. A. W. Hasbullah, “Design of a Student Payment System Based on
Virtual Account (Case Study at SMK NU Al-Hidayah Ngimbang),” NEWTON: Networking and
Information Technology, vol. 1, no. 1, pp. 35-40, 2021, doi: 10.32764/newton.v1il.1835.

E. Julio, M. A. I. Pakereng, and I. Artikel, “Implementasi API Payment Gateway Menggunakan Arsitektur
Microservice,” JURNAL INFORMATIKA, vol. 8, no. 2, pp. 123-130, 2021, doi: 10.31294/ji.v8i2.10590.

N. Wulandari, A. Wibowo, and B. Susanto, “Penerapan RESTful API untuk Membangun Program
Pembayaran Piutang Menggunakan Otentikasi OAuth 2.0,” Jurnal Terapan Teknologi Informasi, vol. 5,
no. 1, pp. 1-10, Apr. 2021, doi: 10.21460/jutei.2021.51.230.

A. Pambudi and W. Apriandari, “An Extreme Programming Approach for Instructor Performance
Evaluation System Development,” Journal of Informatics Information System Software Engineering and
Applications (INISTA), vol. 5, no. 2, pp. 126—135, May 2023, doi: 10.20895/inista.v5i2.1050.

S. Dhina Pohan and I. Firdaus, “IMPLEMENTATION OF EXTREME PROGRAMMING METHOD IN
THE DEVELOPMENT OF PEKANBARU COMMUNITY TRAINING INFORMATION SYSTEM,”
Jurnal Pendidikan Teknologi Informasi, vol. 6, no. 1, pp. 20-33, 2022, doi: 10.22373/cj.v6i1.11851.

A. F. Lestari, “Implementasi Extreme Programming Pada Perancangan Sistem Informasi Penjualan Buku
Menggunakan Java,” Journal of Accounting Information System, vol. 3, no. 1, pp. 6—12, 2023, doi:
10.31294/jais.v3i01.2010.

B. Alturas, “Connection between UML use case diagrams and UML class diagrams: a matrix proposal,”
International Journal of Computer Applications in Technology, vol. 72, no. 3, pp. 161-168, 2023, doi:
10.1504/1JCAT.2023.133294.

Y. Fatman, N. Khoirun Nafisah, and P. Bendoro Jembar Pambudi, “Implementasi Payment Gateway
dengan Menggunakan Midtrans pada Website UMKM Geberco,” Jurnal Komtekinfo, vol. 10, no. 2, pp.
64-72, Jun. 2023, doi: 10.35134/komtekinfo.v10i2.364.

K. ’ Afiifah, Z. Fira Azzahra, and A. D. Anggoro, “Analisis Teknik Entity-Relationship Diagram dalam
Perancangan Database Sebuah Literature Review,” JURNAL INTECH, vol. 3, no. 2, pp. 18-22, 2022, doi:
10.54895/intech.v3i2.1682.

A. Putri Yulandi, “Analisis Performa Backend Framework: Studi Komparasi Framework Golang dan
Node.js,” Jurnal Riset Sistem Informasi Dan Teknik Informatika (JURASIK), vol. 8, no. 1, pp. 155-168,
2023, doi: 10.30645/jurasik.v8il.551.

Anggraeni D Mutia, Utomo S Fandy, and Marcos Hendra, “Integrasi Backend Golang-Echo pada Aplikasi
Greenly sebagai Solusi Teknologi Pengelolaan Sampah Digital,” Jurnal Informatika: Jurnal
pengembangan IT, vol. 10, no. 2, pp. 527-536, 2025, doi: 10.30591/jpit.v10i2.8227.

H. Nurfauziah and I. Jamaliyah, “PERBANDINGAN METODE TESTING ANTARA BLACKBOX
DENGAN WHITEBOX PADA SEBUAH SISTEM INFORMASI,” Jurnal VISUALIKA, vol. 8, no. 2, pp.
105-113, 2022.

3517

