
Jurnal Pendidikan dan Teknologi Indonesia (JPTI) DOI: https://doi.org/10.52436/1.jpti.1183
Vol. 5, No. 11, November 2025, Hal. 3505-3517 p-ISSN: 2775-4227
 e-ISSN: 2775-4219

3505

Pengembangan Backend Pada Sistem Pembayaran Virtual Account dengan REST API

Menggunakan Metode Extreme Programming di UHAMKA

Irsana Ahmad*1, Ade Davy Wiranata2

1,2Teknik Informatika, Universitas Muhammadiyah Prof. DR. HAMKA, Indonesia

Email: 1irsanaahmad@uhamka.ac.id, 2adedavy@uhamka.ac.id

Abstrak

Penelitian ini mengembangkan backend API untuk sistem pembayaran virtual account (VA) menggunakan

pendekatan REST API dan metode Extreme Programming (XP). Bahasa pemrograman Go (Golang) dipilih karena

kemampuannya dalam menangani permintaan secara efisien dan paralel. Sistem dirancang untuk mendukung

proses pembayaran pendidikan di Universitas Muhammadiyah Prof. Dr. Hamka (UHAMKA). Proses

pengembangan mengikuti prinsip XP yang menekankan iterasi pendek, kolaborasi intensif, dan pengujian

berkelanjutan. Backend terdiri dari dua layanan utama, yaitu inquiry untuk pengecekan tagihan mahasiswa dan

payment untuk pencatatan transaksi pembayaran dari bank. Integrasi dilakukan dengan database internal agar

proses pencatatan tagihan dan transaksi berjalan otomatis dan realtime. Pengujian menunjukkan bahwa sistem

mampu merespons permintaan inquiry dan payment dari bank secara cepat dan akurat. Penerapan sistem ini

meningkatkan efisiensi pengelolaan pembayaran, meminimalkan kesalahan pencatatan, serta mendukung otomasi

layanan administrasi akademik. Hasil penelitian ini menunjukkan bahwa kombinasi metode XP dan arsitektur

REST API efektif dalam membangun layanan backend yang andal dan terintegrasi untuk kebutuhan pembayaran

pendidikan.

Kata kunci: Backend, Extreme Programming, Golang, REST API, Sistem Pembayaran, Virtual Account

Backend Development in Virtual Account Payment Systems with REST API Using Extreme

Programming Methods at UHAMKA

Abstract

This study develops a backend API for a virtual account (VA) payment system using the REST API approach and

the Extreme Programming (XP) methodology. The backend is implemented using the Go (Golang) programming

language due to its efficiency and ability to handle concurrent processes. The system is designed to support

education payment services at Universitas Muhammadiyah Prof. Dr. Hamka (UHAMKA). The development

process follows XP principles, emphasizing short iterations, intensive collaboration, and continuous testing. The

backend consists of two main services: inquiry, for retrieving student billing information, and payment, for

recording transactions from partner banks. Integration with the university's internal database enables automated

and real-time processing of billing and transaction data. Testing results show that the system accurately and

efficiently responds to inquiry and payment requests from banks. The implementation of this backend improves

payment management efficiency, reduces the potential for transaction errors, and supports automation in

academic administrative services. The results demonstrate that combining the XP methodology with a REST

architecture is effective for developing a reliable and integrated backend service for education payment systems.

Keywords: Backend, Extreme Programming, Golang, Payment System, REST API, Virtual Account

1. PENDAHULUAN

Universitas Muhammadiyah Prof. Dr. Hamka (UHAMKA) merupakan perguruan tinggi swasta milik

Persyarikatan Muhammadiyah yang berada di Jakarta. Seiring dengan kemajuan teknologi, sistem pembayaran di

berbagai sektor terus mengalami perkembangan, termasuk dalam dunia pendidikan. Universitas Muhammadiyah

Prof. Dr. HAMKA (UHAMKA), sebagai salah satu institusi pendidikan tinggi, telah mengadopsi sistem

pembayaran digital melalui virtual account untuk memfasilitasi pembayaran uang kuliah oleh mahasiswa. Dan

metode pembayaran melalui virtual account mempunyai kelebihan praktis, simple tanpa harus melakukan

konfirmasi pembayaran, dan dapat dipakai kapanpun dan dimanapun [1].

https://doi.org/10.52436/1.jpti.1183

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
 e-ISSN: 2775-4219

3506

Hingga saat ini, UHAMKA telah menjalin kerja sama dengan dua bank, yaitu Bank Muamalat dan Bank

Syariah Indonesia (BSI), dalam menyediakan layanan pembayaran melalui virtual account. Namun, sejalan dengan

kebijakan dari Pimpinan Pusat (PP) Muhammadiyah, Muhammadiyah memutuskan untuk mengalihkan dananya

dengan menyebarkan ke sejumlah bank syariah yang beroperasi di Indonesia. Keputusan pengalihan dana tersebut

tertuang dalam memo Muhammadiyah Nomor 320/1.0/A/2024 [2]. Oleh karena itu, UHAMKA sebagai salah satu

amal usaha Muhammadiyah turut menyesuaikan kebijakan tersebut dengan memperluas kerja sama layanan

pembayaran melalui virtual account dengan bank syariah lain yang beroperasi di Indonesia. Langkah ini dilakukan

untuk mendukung kebijakan pusat dan memberikan lebih banyak pilihan pembayaran kepada mahasiswa.

Sistem yang ada perlu dikembangkan untuk integrasi dengan bank baru tanpa mengganggu layanan

pembayaran yang sudah berjalan. Solusinya adalah membangun layanan berbasis REST API menggunakan bahasa

Go. REST API dipilih karena fleksibel, kompatibel lintas platform, dan mudah diskalakan [3][4]. Dengan Go,

layanan ini diharapkan memiliki performa tinggi, efisien, dan mudah dipelihara [3].

REST API merupakan pendekatan arsitektur dalam pengembangan layanan web yang memungkinkan

komunikasi data antara sistem internal dengan sistem eksternal (seperti API bank) melalui protokol HTTP. REST

API memiliki kelebihan berupa kemudahan integrasi lintas platform, dukungan untuk berbagai format data

(terutama JSON), serta kemudahan dalam pemeliharaan dan pengembangan berkelanjutan [5]. Sementara itu,

Bahasa Go dipilih karena performanya yang tinggi, efisiensi dalam pengelolaan memori, serta kemampuannya

dalam menangani concurrent request secara optimal [3], yang sangat dibutuhkan dalam sistem transaksi seperti

layanan VA. Dengan menggunakan bahasa pemrograman Go, layanan API yang dikembangkan diharapkan

memiliki performa yang optimal, kode yang efisien, dan mudah untuk dipelihara.

 Beberapa penelitian terdahulu yang relevan dengan penelitian ini dirangkum sebagai berikut: penelitian oleh

Rahmad Adhi Sasono dkk. pada tahun 2025 yang berjudul "Optimasi Web Service REST Pada Backend Aplikasi

Prospect Menggunakan Metode Extreme Programming" berhasil mengoptimalkan performa integrasi data dan

kecepatan respons sistem melalui penerapan arsitektur REST dan metode pengembangan Extreme Programming

(XP). Penggunaan REST API menggantikan RPC-API yang sebelumnya digunakan, menghasilkan layanan yang

lebih efisien, fleksibel, serta mempercepat proses pengembangan backend aplikasi prospect [6]. Selanjutnnya

Penelitian oleh Fadel Pamungkas dan Hari Setiaji pada tahun 2024 yang berjudul "Implementasi Clean

Architecture pada Pembuatan API Menggunakan Golang", penelitian ini berhasil membangun REST API dengan

struktur sistem yang lebih terorganisir dan mudah dipahami, serta menunjukkan hasil response time yang efisien,

yaitu rata-rata 22–79 ms tergantung ukuran data [7]. Selanjutnya penelitian oleh Irfan Rizq Dzaky Muhammad,

dan Irving V. Paputungan pada tahun 2024 yang berjudul “Pengembangan Backend Server Berbasis Arsitektur

REST API pada Sistem Transfer Dompet Digital” Penelitian ini berhasil mengembangkan sistem server-side untuk

transfer dana antar dompet digital menggunakan arsitektur REST API. Dengan memanfaatkan framework NestJS,

database MySQL, serta metode pengembangan Extreme Programming (XP), penelitian ini menghasilkan API yang

dapat digunakan oleh pengembang frontend dan mobile. Seluruh API diuji menggunakan BlackBox Testing dan

dinyatakan berfungsi dengan baik, mencakup kebutuhan sistem seperti autentikasi, pengelolaan pengguna,

transaksi, pengembalian dana, dan manajemen dompet digital [4]. Selanjutnya ada penelitian oleh Juan Angela

Alma, dan Agus Prihanto pada tahun 2024 yang berjudul “Implementasi Backend System Untuk Integrasi Payment

Gateway Pada Sistem Pembayaran Kost Menggunakan Express.js” Penelitian ini berhasil mengimplementasikan

sistem backend menggunakan Express.js untuk mengintegrasikan payment gateway Midtrans dalam sistem

pembayaran kost. Backend system dirancang untuk meningkatkan keamanan dengan menyimpan client key di sisi

server, sehingga tidak terekspos ke frontend [8]. Selanjutnya ada penelitian oleh Nurfiqih, dan Intan kumalasari

pada tahun 2023 yang berjudul “Implementasi Host To Host Bca Untuk Transaksi Virtual Account Bpr Niaga

Menggunakan Restful Api” Penelitian ini menghasilkan aplikasi RESTful API menggunakan framework Spring

Boot dengan bahasa pemrograman Java yang mampu menerima pesan dalam format JSON dan mengonversinya

menjadi format ISO8583 untuk dikirim ke core banking BPR Niaga. Sistem ini memungkinkan nasabah BPR

Niaga untuk melakukan penyetoran secara online melalui seluruh kanal yang dimiliki oleh Bank BCA. Proses

pengujian menunjukkan bahwa fitur-fitur seperti token access, inquiry, dan payment berfungsi dengan baik.

Aplikasi ini mendukung transaksi virtual account secara efisien dan memperluas akses nasabah terhadap layanan

perbankan modern [9]. Selanjutnya ada penelitian oleh Dimas Kita Ladiba, Weda Adistianaya Dewa, dan Samsul

Arifin pada tahun 2021 yang berjudul “Analisis dan Pengembangan API Siakad Menggunakan Arsitektur Restful

Web Service pada Infrastruktur Microservice” Penelitian ini menghasilkan pengembangan API berbasis arsitektur

Restful Web Service yang diterapkan pada infrastruktur microservice untuk mendukung Sistem Informasi

Akademik (SIAKAD) di Kampus STIMATA. Hasil pengujian menunjukkan Sistem API berhasil mempermudah

pengembangan aplikasi multiplatform dengan rata-rata indeks interpretasi sebesar 95,3% dan Pengujian blackbox

memastikan bahwa sistem sudah dapat digunakan dengan baik meskipun terdapat beberapa kesalahan minor pada

implementasi tertentu [10]. Selanjutnya ada Penelitian oleh Moh. Anshori Aris Widya dan Nurul Aini pada tahun

2021 yang berjudul "Design of a Student Payment System Based on Virtual Account (Case Study at SMK NU Al-

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
 e-ISSN: 2775-4219

3507

Hidayah Ngimbang)" yang berhasil mengembangkan sistem pembayaran pendidikan berbasis virtual account

(BRIVA) yang terintegrasi secara daring. Sistem ini terbukti lebih efisien dibandingkan metode konvensional

karena mampu mempercepat proses pembayaran, memudahkan pelaporan keuangan, serta mengurangi antrean dan

risiko kesalahan pencatatan [11]. Selanjutnya penelitian oleh Erry Julio dan Magdalena A. Ineke Pakereng pada

tahun 2021 yang berjudul "Implementasi API Payment Gateway Menggunakan Arsitektur Microservice" berhasil

membangun sistem payment gateway berbasis microservice yang dapat melakukan routing transaksi ke berbagai

bank secara otomatis. Arsitektur ini terbukti meningkatkan fleksibilitas, skalabilitas, dan keamanan layanan

melalui penggunaan JWT dan whitelist IP, serta memudahkan integrasi dengan bank baru melalui pemisahan

layanan per bank [12]. Selanjutnya ada penelitian oleh Nina Wulandari, Argo Wibowo, dan Budi Susanto pada

tahun 2021 yang berjudul "Penerapan RESTful API untuk Membangun Program Pembayaran Piutang

Menggunakan Otentikasi OAuth 2.0", penelitian ini berhasil membangun sistem pembayaran piutang

menggunakan RESTful API dan membuktikan bahwa metode otentikasi OAuth 2.0 memberikan performa yang

lebih stabil dibandingkan Basic Auth, dilihat dari response time dan jumlah request per detik dalam uji beban [13].

Selanjutnya ada penelitian oleh Padeli, Eduard Hotman Purba, dan Bonari Simanjuntak pada tahun 2020 yang

berjudul “Analisa Pembayaran Perkuliahan dengan Virtual Account pada Universitas Raharja” Penelitian ini

menganalisis penggunaan sistem Virtual Account sebagai metode pembayaran perkuliahan di Universitas Raharja.

Hasilnya menunjukkan bahwa penerapan Virtual Account dapat meningkatkan efektivitas dan efisiensi

pembayaran, baik bagi mahasiswa maupun pihak kampus. Sistem ini memudahkan pengelolaan data pembayaran

secara real-time dan mengurangi risiko kesalahan dibandingkan dengan sistem manual sebelumnya. Penelitian ini

merekomendasikan kolaborasi dengan pihak bank untuk mengintegrasikan API Virtual Account ke dalam sistem

kampus [1].

Dengan membangun backend yang berbasis REST API, UHAMKA dapat mengembangkan sistem

pembayaran VA yang dapat diintegrasikan dengan berbagai bank baru secara bertahap, tanpa harus mengubah

struktur utama sistem. Hal ini akan memberikan fleksibilitas dalam pengelolaan layanan pembayaran dan

mendukung skalabilitas sistem ke depannya.

Penelitian ini bertujuan untuk menganalisis bagaimana penerapan arsitektur REST API dapat mendukung

sistem pembayaran digital di UHAMKA. Selain itu, penelitian ini diharapkan menjadi dokumentasi teknis dalam

pembuatan REST API untuk layanan virtual account, yang dapat dijadikan acuan dalam pengembangan sistem

serupa. Hasil penelitian ini diharapkan memberikan kontribusi nyata terhadap pengembangan sistem pembayaran

di UHAMKA secara berkelanjutan, sekaligus memperkuat ekosistem teknologi informasi yang ada di lingkungan

kampus.

2. METODE PENELITIAN

Gambar 1. Alur Metode Extreme Programming (XP)

Extreme Programming (XP) adalah salah satu metode Agile yang paling banyak digunakan sejak pertama

kali diperkenalkan oleh Kent Beck pada tahun 1996 hingga saat ini. XP bertujuan menciptakan sebuah model

proses yang sederhana dan ringan, sehingga memungkinkan tim pengembang beradaptasi dengan cepat terhadap

perubahan kebutuhan. Dibandingkan dengan kerangka kerja Agile lainnya, XP dikenal sebagai metodologi yang

paling terfokus dan spesifik dalam menerapkan praktik rekayasa perangkat lunak yang baik dan disiplin [14].

Extreme Programming (XP) adalah salah satu metode dalam SDLC yang menekankan pada iterasi cepat,

umpan balik langsung, dan kolaborasi tim yang erat. XP cocok digunakan dalam pengembangan aplikasi modern,

termasuk pengembangan API karena fleksibilitasnya terhadap perubahan kebutuhan [15]. Perancangan sistem API

dilakukan dengan menggunakan pendekatan Extreme Programming (XP), Pendekatan ini sangat sesuai untuk

pengembangan backend karena memungkinkan penyesuaian secara dinamis terhadap perubahan kebutuhan sistem.

Gambar 1 menjelaskan siklus proses metode Extreme Programming yang diterapkan: dimulai dari Planning,

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
 e-ISSN: 2775-4219

3508

dilanjutkan Design, Coding, Testing, dan diakhiri dengan Release. Setiap iterasi bersifat berulang dengan

Refactoring sebagai bagian dari perbaikan berkelanjutan. Tahapan XP yang diimplementasikan dalam penelitian

ini ditunjukkan pada Gambar 1 dan dijelaskan sebagai berikut:

1) Perencanaan (Planning) merupakan Fase awal dalam metode Extreme Programming (XP) adalah tahap

perencanaan, di mana terjadi kolaborasi erat antara pengembang dan pelanggan. Pada tahap ini, kedua belah

pihak bekerja sama untuk merumuskan kebutuhan sistem, menetapkan fitur-fitur utama, menentukan

fungsionalitas yang harus disediakan, serta memperkirakan waktu penyelesaian proyek. Pengembang mulai

dengan mengumpulkan kebutuhan sistem dalam bentuk cerita pengguna (user stories), yang menggambarkan

fitur dari sudut pandang pengguna [14]. Tahapan perencanaan dilakukan dengan merancang kebutuhan API

yang akan digunakan. Backend developer menyusun daftar endpoint yang diperlukan serta fungsionalitas

yang harus didukung oleh API.

2) Perancangan (Design) merupakan Kegiatan pemodelan sistem dilakukan berdasarkan hasil analisis

kebutuhan, yang kemudian divisualisasikan menggunakan Unified Modeling Language (UML). UML ini

mencakup berbagai jenis diagram, di antaranya Use Case Diagram untuk menggambarkan interaksi antara

pengguna dan sistem, serta Activity Diagram yang menunjukkan alur aktivitas atau proses bisnis dalam

sistem. Sementara itu, untuk pemodelan basis data digunakan Entity Relationship Diagram (ERD) [16].

3) Pengkodean (Coding) merupakan Tahap implementasi merupakan proses penerapan dari hasil desain model

sistem ke dalam bentuk kode program yang nyata. Hasil dari proses ini adalah prototipe yang dapat dijalankan

dan dievaluasi lebih lanjut [14]. pengembangan API ini menggunakan framework Echo dengan bahasa

pemograman Go Language (Golang).

4) Pengujian (Testing) merupakan Fase terakhir dalam metode Extreme Programming (XP) adalah pengujian,

di mana setiap kode harus dilengkapi dengan unit test dan wajib lolos pengujian tanpa error sebelum

diimplementasikan ke lingkungan pengguna. Jika ditemukan masalah, pengembang akan melakukan

refactoring untuk memperbaiki kode tanpa mengubah fungsinya [16]. Pengujian dilakukan terhadap dua

endpoint utama: /inquiry dan /payment menggunakan metode black box testing. Setiap endpoint diuji

sebanyak 10 kali untuk masing-masing dari tiga skenario: input valid, input tidak valid, dan input kosong.

Pengujian dilakukan dengan Postman dan hasilnya dicatat berdasarkan status HTTP respons serta isi body

respons JSON. Suatu pengujian dianggap berhasil jika sistem memberikan respons yang sesuai ekspektasi

(kode status 200/400/500) dan struktur respons JSON lengkap tanpa error.

Selain itu, Basis data menggunakan SQL Server. Kode editor menggunakan Visual Studio Code. Pengujian

API dilakukan menggunakan Postman pada lingkungan server lokal yang dijalankan di laptop.

3. HASIL DAN PEMBAHASAN

3.1. Hasil

3.1.1. Perancangan (Planning)

Tahapan perencanaan dilakukan dengan merancang kebutuhan API yang akan digunakan. Berdasarkan tabel

1 kolom Fitur berisi identifikasi berdasarkan kebutuhan sistem yang berkaitan langsung dengan proses bisnis.

Kebutuhan merujuk pada metode HTTP yang digunakan dalam pemanggilan API, sedangkan Deskripsi

menjelaskan fungsi dari masing-masing fitur API tersebut.

Tabel 1. Kebutuhan Fungsional API

Fitur Kebutuhan Deskripsi

Inquiry POST API untuk proses pengecekan tagihan pembayaran

Payment POST API untuk proses pembayaran

3.1.2. Perancangan (Design)

a) Unified Modeling Language (UML)

UML (Unified Modeling Language) merupakan bahasa pemodelan standar yang digunakan untuk

merancang, menggambarkan, dan mendokumentasikan sistem informasi berbasis objek dengan

menggunakan simbol atau notasi yang telah ditetapkan [17].

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
 e-ISSN: 2775-4219

3509

• Use Case Diagram

Gambar 2. Use Case Diagram Virtual Account Transaction

Use Case Diagram adalah salah satu jenis diagram dalam UML yang menunjukkan interaksi antara

aktor (pengguna atau sistem lain) dengan sistem, serta menjelaskan bentuk interaksi atau layanan yang

tersedia bagi pengguna [18]. Gambar 2 menggambarkan proses interaksi antara mahasiswa dan sistem

API backend virtual account dalam melakukan transaksi pembayaran pendidikan. Mahasiswa dapat

melihat virtual account (VA) dan tagihan yang harus dibayar. Setelah itu, mahasiswa melakukan proses

pembayaran, yang mencakup dua aktivitas utama, yaitu Mengakses API inquiry untuk memvalidasi

tagihan dan Mengakses API payment untuk melakukan pembayaran Setelah pembayaran berhasil,

sistem akan menyimpan data transaksi ke dalam basis data. Mahasiswa juga memiliki opsi untuk melihat

invoice pembayaran, yang merupakan ekstensi dari proses pembayaran.

• Activity Diagram

Gambar 3. Activity Diagram VA Transaction

Activity Diagram digunakan untuk memodelkan alur kegiatan dalam perangkat lunak, di mana urutan

proses digambarkan secara vertikal sesuai dengan jalannya aktivitas [18]. dari Gambar 3 dapat diketahui

Dimana Mahasiswa adalah Pihak yang melakukan pembayaran tagihan kuliah melalui VA. Bank adalah

Sistem perantara yang menerima permintaan pembayaran dari mahasiswa dan meneruskannya ke

backend kampus. Backend adalah Sistem milik kampus yang menyimpan dan mengelola data tagihan

dan pembayaran mahasiswa. Langkah pertama mahasiswa melihat tagihan dan nomor VA pada halaman

akademik yang disediakan kampus, setelahnya Mahasiswa Melakukan Pembayaran, lalu Bank

Melakukan Inquiry ke Backend, lalu Backend Melakukan Pengecekan Data, lalu Bank Menerima

Response Inquiry, lalu Bank Melakukan API Payment ke Backend, lalu Backend Menyimpan

Transaksi, lalu Backend Memberikan Response Payment, lalu Bank Menampilkan Hasil Payment,

terakhir Mahasiswa Mendapatkan Bukti Pembayaran.

b) Entity Relationship Diagram (ERD)

Entity Relationship Diagram (ERD) merupakan sebuah diagram dengan notasi grafis yang digunakan dalam

perancangan basis data untuk menggambarkan hubungan antar data. ERD berfungsi sebagai alat bantu dalam

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
 e-ISSN: 2775-4219

3510

proses perancangan database serta memberikan visualisasi mengenai cara kerja database yang akan dibangun

[19].

• Inquiry

Gambar 4. ERD Inquiry

Gambar 4 menggambarkan proses inquiry pembayaran virtual account mahasiswa, sistem melakukan

pengecekan terhadap data mahasiswa, program studi, dan tagihan yang dimiliki. Untuk mendukung

proses tersebut. Tabel T_MAHASISWA untuk Menyimpan data dasar mahasiswa (NIM, Nama, Kode

Program Studi), Berelasi dengan V_FAKJURPROGX (melalui KODEPROGDI) untuk mendapatkan

detail program studi/fakultas mahasiswa dan Berelasi dengan T_AKM (melalui NIM) untuk

menunjukkan tagihan/komponen pembayaran yang dimiliki mahasiswa. Selanjutnya

V_FAKJURPROGX untuk Menyediakan informasi detail Program Studi dan Fakultas. Lalu tabel

T_AKM untuk Mencatat komponen-komponen pembayaran yang menjadi tagihan untuk setiap

mahasiswa (misal SPP semester ini), Berelasi dengan T_KOMP (melalui KODEKOMP) untuk

menjelaskan jenis komponen tagihan tersebut (misal: BOP, SKS). Terakhir tabel T_KOMP untuk

Menyimpan daftar dan detail dari setiap jenis komponen pembayaran (nama komponen, bank terkait,

kode pembayaran).

• Payment

Gambar 5. ERD Payment

Setelah mahasiswa melakukan pembayaran melalui virtual account, sistem akan mencatat informasi

transaksi pembayaran tersebut untuk keperluan rekonsiliasi dan verifikasi. Berdasarkan Gambar 5 tabel

T_MAHASISWA Merepresentasikan mahasiswa yang melakukan pembayaran, Berelasi dengan

tbl_payGateway (melalui NIM) untuk mencatat bahwa transaksi pembayaran ini dilakukan oleh/untuk

mahasiswa tersebut. Lalu tabel T_CMBKOMP untuk Menyimpan kode bank yang terlibat dalam

pembayaran, Berelasi dengan tbl_payGateway (melalui KODEBANK) untuk menunjukkan bank mana

yang memproses transaksi. Terakhir tabel tbl_payGateway untuk Tabel utama untuk mencatat setiap

transaksi pembayaran yang melalui gateway, termasuk detail seperti jumlah, tanggal, nomor VA, status,

dan lain-lain.

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
 e-ISSN: 2775-4219

3511

3.1.3. Pengkodean (Coding)

Proses implementasi API dilakukan sesuai hasil perancangan dengan menggunakan bahasa pemrograman

Go. Definisi Go sebagai bahasa pemrograman mencakup kemampuan untuk mengembangkan perangkat lunak

yang efisien dan cepat, dengan sintaks yang mudah dipahami [20]. Go menggunakan pendekatan konkurensi yang

ringan untuk mengatasi masalah skalabilitas, serta menyediakan garbage-collector yang efisien untuk mengelola

memori [3]. Pada penelitian ini juga menggunakan framework Echo. Framework merupakan kerangka kerja berisi

kumpulan fungsi yang siap digunakan untuk tujuan tertentu dan framework Echo adalah kerangka kerja yang kuat

dan serbaguna untuk membangun aplikasi yang skalabel dan berperforma tinggi menggunakan bahasa

pemrograman Go [21]. Penulisan kode mengikuti prinsip clean code agar mudah dipelihara dan dikembangkan.

a) Struktur Folder

Gambar 6. Struktur Folder

Pada awal pengembangan, proyek Go diinisialisasi menggunakan perintah go mod init, yang akan membuat

file go.mod sebagai penanda modul utama aplikasi. Selanjutnya, menyusun struktur folder yang rapi dan

terorganisir berdasarkan pendekatan clean architecture, untuk memisahkan tanggung jawab antar komponen

seperti yang digambarkan pada Gambar 6. Folder utama seperti app/ dibuat untuk menyimpan file konfigurasi

dan pengaturan inti aplikasi. Di dalamnya terdapat file main.go, yang berperan sebagai entry point. Di dalam

main.go, aplikasi akan memanggil fungsi inisialisasi yang berada di file server.go. Lalu framework Echo

diinstal dengan go get github.com/labstack/echo/v4.

b) Clean Architecture

Gambar 7. Architecture Component Diagram

Diagram pada Gambar 7 menggambarkan arsitektur pengembangan backend sistem virtual account yang

mengadopsi pola Clean Architecture. Clean Architecture adalah pendekatan arsitektur perangkat lunak yang

menekankan pemisahan tanggung jawab dalam beberapa lapisan, sehingga sistem menjadi lebih mudah

dipahami, diuji, dan dikembangkan. Pada proyek ini memiliki 4 layer utama yaitu Models Layer, Repository

Layer, Use Case Layer, dan Delivery Layer [7].

1) Models Layer

Berisi objek domain atau business model inti dari aplikasi. Pada proyek saya berisi struct go contohnya

seperti tabel 2.

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
 e-ISSN: 2775-4219

3512

Tabel 2. Kebutuhan Fungsional API

Kode Program

2) Repository Layer

Repository berfungsi sebagai lapisan penghubung antara sistem dengan database, baik relational

(RDBMS) maupun NoSQL. Komponen ini menangani semua operasi CRUD, dan dipanggil oleh

usecase untuk mengambil atau menyimpan data, contohnya seperti tabel 3.

Tabel 3. Contoh Kode Program Repository

Kode Program

3) Use Case Layer

Usecase berisi logika bisnis spesifik apa yang boleh dan tidak boleh dilakukan. Usecase akan

memanggil fungsi repository untuk menyimpan/membaca data, dan melakukan proses seperti validasi

atau transformasi data, contohnya seperti tabel 4.

Tabel 4. Contoh Kode Program Use Case

Kode Program

type RequestBodyBank struct {

 REFFNUMBER string `json:"reffnumber"`

 TIMESTAMP string `json:"timestamp"`

 CHANNELID string `json:"channelID"`

 COMPANYCODE string `json:"companyCode"`

 CHANNELED string `json:"channeled"`

 AMOUNT string `json:"amount"`
 NUMBERVA string `json:"numberVa"`

 NIM string `json:"nim"`

 TYPEINQ string `json:"typeInq"`
 PROCODE string `json:"procode"`

 REKDEBT string `json:"rekdebt"`

 TERMINALID string `json:"terminalID"`
 TID string `json:"tid"`

 TRXDATETIME string `json:"trxDateTime"`

 USERNAME string `json:"username"`
 PASSWORD string `json:"Password"`

 KEY string `json:"key"`

 SOF string `json:"sof"`
}

func (m mssqlTransactionRepo) PaymentBank(ctx context.Context, args domain.RequestBodyBank) (domain.DataStoreBank, error) {
 var transaction domain.DataStoreBank

 sqlExec := domain.ExecPaymentBank()

 rows, err := m.DB.QueryContext(ctx, sqlExec,
 args.TIMESTAMP, args.CHANNELID, args.REFFNUMBER, args.COMPANYCODE, args.CHANNELED, args.NIM,

 args.AMOUNT, args.TYPEINQ, args.PROCODE, args.TERMINALID)

 if err != nil {
 return transaction, err

 }

 defer func() {

 errRow := rows.Close()

 if errRow != nil {
 return

 }

 }()

 if rows.Next() {

 err := rows.Scan(&transaction.STATUS)

 if err != nil {

 return transaction, err

 }
 }

 return transaction, nil

}

func (s transactionUseCase) PaymentBank(ctx context.Context, args domain.RequestBodyBank) (domain.DataStoreBank, error) {
 ctx, cancel := context.WithTimeout(ctx, s.contextTimeout)

 defer cancel()

 transaction, err := s.transactionRepo.PaymentBank(ctx, args)

 if err != nil {

 return domain.DataStoreBank{}, err
 }

 // Perform operation is a function that'll be executed after the transaction is fetched.

 if err := utils.PerformOperation(ctx); err != nil {

 return domain.DataStoreBank{}, err

 }

 return transaction, nil

}

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
 e-ISSN: 2775-4219

3513

4) Delivery Layer

Delivery merupakan lapisan paling luar yang menangani interaksi dengan client. Dalam proyek ini,

komunikasi dilakukan melalui REST API menggunakan framework Echo. Delivery menerima

permintaan HTTP, memvalidasi input, memanggil usecase yang relevan, lalu mengembalikan response

ke client, contohnya seperti tabel 5.

Tabel 5. Contoh Kode Program Delivery

Kode Program

c) Run Program

Gambar 8. menjalankan Program Golang dengan Framework Echo

Jika proses coding sudah selesai dan tidak ditemukan error maka untuk menjalankan program dengan

menggunakan perintah go run main.go, jika program berjalan tanpa kendala makan akan tampil seperti

Gambar 8.

3.1.4. Pengujian (Testing)

a) Pengujian Dengan Postman

Postman adalah alat untuk pengujian API yang memungkinkan pengembang untuk menguji endpoint,

mengotentikasi permintaan, dan memverifikasi respons. Postman mendukung berbagai format data, seperti

JSON dan XML, serta memfasilitasi pengujian API secara menyeluruh [3].

• Inquiry

Gambar 9. Hasil hit endpoint inquiry pada postman

if inquiry.NIM == "" {
 utils.InsertLog(file, d.Log, "Bill ID not found. Refno: "+body.REFFNUMBER, "error", c)

 uhamka := domain.ResponsePaymentEducation{

 BILLDETAILS: domain.BillDetailsBank{
 BILLNAME: "",

 BILLAMOUNT: "",

 BILLAMOUNTPAY: "",
 BILLAMOUNTBAYAR: "",

 BILLID: "",

 TAHUNID: "",

 BILLNAMEID: "",

 },

 REFFNUMBER: body.REFFNUMBER,
 TIMESTAMP: time.Now().In(utils.CurrentTimeLoc()).Format("2006-01-02 15:04:05"),

 ERRORCODE: bank.RC_BILL_ID_NOT_FOUND,

 RESPONSECODE: bank.RC_BILL_ID_NOT_FOUND,
 RESPONSEDESC: bank.DESC_BILL_ID_NOT_FOUND + " Bill ID not found",

 STATUSDESCRIPTION: "",

 NIM: body.NIM,
 PAYMENTAMOUNT: body.AMOUNT,

 USERLOGIN: "",

 TRANSACTIONID: "",

 PASSWORD: body.PASSWORD,

 SEQNO: "",

 CHANNELID: body.CHANNELID,
 }

 return c.JSON(http.StatusOK, uhamka)
 }

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
 e-ISSN: 2775-4219

3514

Berdasarkan Gambar 9 hasil pengujian API bekerja sesuai harapan. Permintaan yang dikirim berhasil

mengembalikan data mahasiswa sesuai dengan NIM yang diminta, lengkap dengan informasi fakultas,

prodi, dan nominal tagihan. Status transaksi mengindikasikan bahwa inquiry berhasil dan sistem

backend dapat membaca data mahasiswa dari database.

• Payment

Gambar 10. Hasil hit endpoint payment pada postman

Berdasarkan Gambar 10 transaksi payment berhasil dilakukan untuk mahasiswa dengan NIM:

9074042103015061. Nilai pembayaran 200000 diterima sistem dan diproses tanpa kesalahan

(errorCode: "00"). Response menunjukkan bahwa API backend dapat menerima dan memproses

pembayaran sesuai dengan standar virtual account.

b) Pengujian Dengan Black Box

Black box testing, yang juga dikenal sebagai Behavioral Testing, merupakan metode pengujian perangkat

lunak yang berfokus pada pengamatan hasil dari input dan output tanpa memeriksa struktur internal kode

program. Pengujian ini biasanya dilakukan pada tahap akhir pengembangan untuk memastikan bahwa

perangkat lunak berfungsi sebagaimana mestinya [22]. Pengujian dilakukan terhadap dua endpoint utama

dalam sistem backend Virtual Account UHAMKA, yaitu: inquiry dan payment.

Berikut merupakan hasil dari pengujian black box pada endpoint yang bisa dilihat pada tabel 6.

Tabel 6. Pengujian Endpoint Menggunakan Blackbox

No Skenario Input (Field Penting) Output yang Diharapkan Status

Inquiry endpoint: /transaction/nama-bank /dev/education/inquiry

1 Inquiry dengan data

lengkap dan NIM

valid

nim: 9074042103015061 200, return detail tagihan VA LULUS

2 Inquiry dengan NIM

tidak terdaftar

nim: 9999999999999999 "statusDescription": "Bill ID not

found.",

LULUS

3 Inquiry dengan NIM

kosong

nim: "" "statusDescription": "Format error.

Payloads validation failed",

LULUS

4 Inquiry dengan

channelID

Kosong

"channelID": "" "statusDescription": "Format error.

Payloads validation failed",

LULUS

5 Inquiry dengan

companyCode

Kosong

"companyCode": ""

"statusDescription": "Format error.

Payloads validation failed",

LULUS

6 Inquiry dengan

typeInq Kosong

"typeInq": "" "statusDescription": "Format error.

Payloads validation failed",

LULUS

7 Inquiry dengan

procode Kosong

"procode": "" "statusDescription": "Format error.

Payloads validation failed",

LULUS

8 Inquiry dengan

terminalID Kosong

"terminalID": "" "statusDescription": "Format error.

Payloads validation failed",

LULUS

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
 e-ISSN: 2775-4219

3515

9 Inquiry dengan

reffnumber Kosong

"reffnumber": "" "statusDescription": "Format error.

Payloads validation failed",

LULUS

10 Inquiry dengan

trxDateTime Kosong

"trxDateTime":"" "statusDescription": "Format error.

Payloads validation failed",

LULUS

Payment endpoint: /transaction/mega-syariah/dev/education/payment

11 Payment dengan data

valid

nim: 9074042103015061,

amount: 200000

200, Return response detail paymaent

VA

LULUS

12 Payment dengan

amount lebih dari

billAmount

amount: "300000" "responseDesc": "Invalid full amount.

Payment not equal total nominal.

Payment must be <= Tagihan",

LULUS

13 Payment dengan NIM

salah

nim: 9999999999999999 "responseDesc": "Bill ID not found.

Bill ID not found",

LULUS

14 Payment dengan nim

Kosong

"nim": "" "responseDesc": "Format error.

Payloads validation failed",

LULUS

15 Payment dengan

channelID Kosong

"channelID": "" "responseDesc": "Format error.

Payloads validation failed",

LULUS

16 Payment dengan

reffnumber Kosong

"reffnumber": "" "responseDesc": "Format error.

Payloads validation failed",

LULUS

17 Payment dengan

companyCode

Kosong

"companyCode": "" "responseDesc": "Format error.

Payloads validation failed",

LULUS

18 Payment dengan

typeInq Kosong

"typeInq": "" "responseDesc": "Format error.

Payloads validation failed",

LULUS

19 Payment dengan

terminalID Kosong

"terminalID": "" "responseDesc": "Format error.

Payloads validation failed",

LULUS

20 Payment dengan

procode Kosong

"procode": "" "responseDesc": "Format error.

Payloads validation failed",

LULUS

3.2. Pembahasan

Gambar 11. Cara Kerja API

Berdasarkan Gambar 11, API (Application Programming Interface) memfasilitasi aplikasi yang berbeda

untuk saling terhubung dan bekerja sama secara serentak [12]. REST (Representational State Transfer) merupakan

arsitektur standar dalam pengembangan API untuk layanan web, yang memungkinkan sistem melakukan

permintaan guna mengakses dan mengelola sumber daya melalui protokol HTTP. Gaya arsitektur REST API

menetapkan seperangkat prinsip dan aturan dalam pembuatan layanan web. Format data seperti JSON atau XML

dalam REST API dapat dideskripsikan lebih lanjut menggunakan modeling language tertentu untuk

merepresentasikan struktur dan kontennya [13]. Sebagai backend developer, peran utama adalah membangun dan

mengelola API agar dapat melayani permintaan data maupun fungsi dari sisi client secara efisien, aman, dan

terstruktur. Proses komunikasi API dimulai dari client, Saat pengguna melakukan suatu aksi (Hit API), maka client

akan mengirimkan HTTP request ke endpoint API yang telah disediakan. API yang dibuat oleh backend developer

kemudian menerima permintaan tersebut dan meneruskannya ke server. Di sinilah logika bisnis dijalankan.

Misalnya, API dapat mengambil data mahasiswa dari basis data, memvalidasi input, atau memproses suatu

transaksi. Setelah proses di server selesai, hasilnya dikemas dalam bentuk response (umumnya dalam format

JSON) yang kemudian dikirimkan kembali ke API. Selanjutnya, API meneruskan response ini ke client agar dapat

ditampilkan kepada pengguna dalam bentuk antarmuka yang mudah dipahami [4].

JSON (JavaScript Object Notation) adalah format pertukaran data yang ringan dan mudah dibaca oleh

manusia serta mudah diproses oleh mesin. JSON sering digunakan dalam komunikasi antara client dan server pada

REST API karena formatnya yang sederhana dan terstruktur [13].

Sistem backend API yang dibangun memiliki sejumlah kelebihan sebagai berikut:

1) Struktur Modular: Penerapan Clean Architecture memisahkan logika bisnis, pengelolaan data, dan antarmuka

sehingga memudahkan perawatan dan pengembangan lanjutan.

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
 e-ISSN: 2775-4219

3516

2) Performa Ringan: Penggunaan bahasa Go (Golang) memungkinkan penanganan concurrent request dengan

efisiensi tinggi.

3) Integrasi Real-time: Sistem mampu merespons permintaan inquiry dan payment dari bank secara otomatis

dan real-time.

4) Pengujian Fleksibel: Penggunaan metode black box testing melalui Postman memungkinkan pengujian cepat

terhadap berbagai skenario permintaan tanpa bergantung pada struktur internal kode.

Dibandingkan penelitian sebelumnya, terdapat beberapa perbedaan dan keunggulan misalnya dalam studi

oleh Widya & Aini (2021) yang merancang sistem pembayaran Virtual Account tingkat SMK menggunakan

metode R&D dan polling bank, namun belum mengimplementasikan API backend secara modular dan real-time

[11]. Sementara itu, dalam studi oleh Sasono et al. (2025) yang menerapkan XP untuk optimasi REST web service,

dengan hasil peningkatan performa, tetapi penerapannya belum spesifik pada sistem pembayaran pendidikan [6].

Oleh karena itu, penelitian ini melengkapi kekosongan tersebut dengan mengimplementasikan backend API VA

menggunakan Golang dan XP, lengkap dengan pengujian black-box, Clean Architecture, dan integrasi real-time

untuk sektor pendidikan tinggi. Meskipun sistem berjalan dengan baik dalam pengujian, terdapat beberapa

keterbatasan seperti Belum Diuji untuk Beban Tinggi (Stress/Load Test), Pengujian hanya dilakukan secara lokal

dalam jumlah request terbatas dan Belum Tersedia Mekanisme Fallback Saat integrasi dengan bank gagal

(misalnya, server down atau respons timeout), sistem saat ini belum memiliki mekanisme fallback seperti retry

otomatis, log antrian, atau notifikasi ke admin.

4. KESIMPULAN

Penelitian ini berhasil mengembangkan backend layanan pembayaran Virtual Account (VA) di Universitas

Muhammadiyah Prof. Dr. HAMKA (UHAMKA) menggunakan pendekatan REST API dan metode Extreme

Programming. Penerapan prinsip Clean Architecture menghasilkan sistem yang modular, mudah dirawat, dan siap

untuk dikembangkan lebih lanjut. Pengujian menunjukkan bahwa sistem berjalan sesuai fungsi yang diharapkan

dan mendukung proses pembayaran secara akurat dan efisien. Untuk pengembangan ke depan, disarankan sistem

perlu dikembangkan lebih lanjut dengan mekanisme autentikasi yang lebih aman dan menambahkan fitur

dashboard monitoring secara real-time.

DAFTAR PUSTAKA

[1] P. Padeli, E. H. Purba, and B. Simanjuntak, “Analisa Pembayaran Perkuliahan dengan Virtual Account

pada Universitas Raharja,” Cyberpreneurship Innovative and Creative Exact and Social Science, vol. 6,

no. 1, pp. 59–70, 2020, doi: 10.33050/cices.v6i1.878.

[2] Aditya P D and Rizal S N, “Kronologi PP Muhammadiyah Alihkan Dana dari BSI, Rencana sejak 2020,”

Kompas.com. Accessed: Oct. 17, 2024. [Online]. Available:

https://www.kompas.com/tren/read/2024/06/06/180000165/kronologi-pp-muhammadiyah-alihkan-dana-

dari-bsi-rencana-sejak-2020?page=all

[3] F. Febriansyah, R. M. Awangga, and R. Andarsyah, MEMBANGUN RESTFUL API DENGAN GO.

Penerbit Buku Pedia, 2023. [Online]. Available: https://books.google.co.id/books?id=KYXOEAAAQBAJ

[4] I. R. D. Muhammad and I. V. Paputungan, “Pengembangan Backend Server Berbasis Arsitektur REST

API pada Sistem Transfer Dompet Digital,” Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi, vol.

3, no. 2, pp. 79–87, Jan. 2024, doi: 10.20885/snati.v3.i2.35.

[5] A. Ehsan, M. A. M. E. Abuhaliqa, C. Catal, and D. Mishra, “RESTful API Testing Methodologies:

Rationale, Challenges, and Solution Directions,” Applied Sciences (Switzerland), vol. 12, no. 9, p. 4369,

May 2022, doi: 10.3390/app12094369.

[6] R. Adhi Sasono, S. Purnama Kristanto, L. Hakim, and D. Yusuf, “Optimasi Web Service REST Pada

Backend Aplikasi Prospect Menggunakan Metode Extreme Programming,” Journal Zetroem, vol. 7, no.

1, pp. 96–103, 2025, doi: 10.36526/ztr.v7i1.4202.

[7] F. Pamungkas and H. Setiaji, “IMPLEMENTASI CLEAN ARCHITECTURE PADA PEMBUATAN API

MENGGUNAKAN GOLANG,” Jurnal INSTEK: Informatika Sains dan Teknologi, vol. 9, no. 1, pp. 80–

86, 2024, doi: 10.24252/instek.v9i1.46409.

[8] J. A. Alma and A. Prihanto, “Implementasi Backend System Untuk Integrasi Payment Gateway Pada

Sistem Pembayaran Kost Menggunakan Express.js,” Journal of Informatics and Computer Science, vol.

06, no. 01, pp. 167–178, 2024, doi: 10.26740/jinacs.v6n01.p167-178.

Jurnal Pendidikan dan Teknologi Indonesia (JPTI) p-ISSN: 2775-4227
 e-ISSN: 2775-4219

3517

[9] I. kumalasari, “IMPLEMENTASI HOST TO HOST BCA UNTUK TRANSAKSI VIRTUAL ACCOUNT

BPR NIAGA MENGGUNAKAN RESTFUL API,” JORAPI : Journal of Research and Publication

Innovation, vol. 1, no. 3, pp. 866–870, 2023, [Online]. Available:

https://jurnal.portalpublikasi.id/index.php/JORAPI/index

[10] D. K. Ladiba, W. A. Dewa, and S. Arifin, “Analisis dan Pengembangan API Siakad Menggunakan

Arsitektur Restful Web Service pada Infrastruktur Microservice,” Prosiding Seminar SeNTIK, vol. 5, no.

1, pp. 255–265, 2021.

[11] M. Anshori, A. Widya, N. Aini, and K. A. W. Hasbullah, “Design of a Student Payment System Based on

Virtual Account (Case Study at SMK NU Al-Hidayah Ngimbang),” NEWTON: Networking and

Information Technology, vol. 1, no. 1, pp. 35–40, 2021, doi: 10.32764/newton.v1i1.1835.

[12] E. Julio, M. A. I. Pakereng, and I. Artikel, “Implementasi API Payment Gateway Menggunakan Arsitektur

Microservice,” JURNAL INFORMATIKA, vol. 8, no. 2, pp. 123–130, 2021, doi: 10.31294/ji.v8i2.10590.

[13] N. Wulandari, A. Wibowo, and B. Susanto, “Penerapan RESTful API untuk Membangun Program

Pembayaran Piutang Menggunakan Otentikasi OAuth 2.0,” Jurnal Terapan Teknologi Informasi, vol. 5,

no. 1, pp. 1–10, Apr. 2021, doi: 10.21460/jutei.2021.51.230.

[14] A. Pambudi and W. Apriandari, “An Extreme Programming Approach for Instructor Performance

Evaluation System Development,” Journal of Informatics Information System Software Engineering and

Applications (INISTA), vol. 5, no. 2, pp. 126–135, May 2023, doi: 10.20895/inista.v5i2.1050.

[15] S. Dhina Pohan and I. Firdaus, “IMPLEMENTATION OF EXTREME PROGRAMMING METHOD IN

THE DEVELOPMENT OF PEKANBARU COMMUNITY TRAINING INFORMATION SYSTEM,”

Jurnal Pendidikan Teknologi Informasi, vol. 6, no. 1, pp. 20–33, 2022, doi: 10.22373/cj.v6i1.11851.

[16] A. F. Lestari, “Implementasi Extreme Programming Pada Perancangan Sistem Informasi Penjualan Buku

Menggunakan Java,” Journal of Accounting Information System, vol. 3, no. 1, pp. 6–12, 2023, doi:

10.31294/jais.v3i01.2010.

[17] B. Alturas, “Connection between UML use case diagrams and UML class diagrams: a matrix proposal,”

International Journal of Computer Applications in Technology, vol. 72, no. 3, pp. 161–168, 2023, doi:

10.1504/IJCAT.2023.133294.

[18] Y. Fatman, N. Khoirun Nafisah, and P. Bendoro Jembar Pambudi, “Implementasi Payment Gateway

dengan Menggunakan Midtrans pada Website UMKM Geberco,” Jurnal KomtekInfo, vol. 10, no. 2, pp.

64–72, Jun. 2023, doi: 10.35134/komtekinfo.v10i2.364.

[19] K. ’ Afiifah, Z. Fira Azzahra, and A. D. Anggoro, “Analisis Teknik Entity-Relationship Diagram dalam

Perancangan Database Sebuah Literature Review,” JURNAL INTECH, vol. 3, no. 2, pp. 18–22, 2022, doi:

10.54895/intech.v3i2.1682.

[20] A. Putri Yulandi, “Analisis Performa Backend Framework: Studi Komparasi Framework Golang dan

Node.js,” Jurnal Riset Sistem Informasi Dan Teknik Informatika (JURASIK), vol. 8, no. 1, pp. 155–168,

2023, doi: 10.30645/jurasik.v8i1.551.

[21] Anggraeni D Mutia, Utomo S Fandy, and Marcos Hendra, “Integrasi Backend Golang-Echo pada Aplikasi

Greenly sebagai Solusi Teknologi Pengelolaan Sampah Digital,” Jurnal Informatika: Jurnal

pengembangan IT, vol. 10, no. 2, pp. 527–536, 2025, doi: 10.30591/jpit.v10i2.8227.

[22] H. Nurfauziah and I. Jamaliyah, “PERBANDINGAN METODE TESTING ANTARA BLACKBOX

DENGAN WHITEBOX PADA SEBUAH SISTEM INFORMASI,” Jurnal VISUALIKA, vol. 8, no. 2, pp.

105–113, 2022.

